Advances in Machine Learning: Where Can Quantum Techniques Help?
- URL: http://arxiv.org/abs/2507.08379v1
- Date: Fri, 11 Jul 2025 07:47:47 GMT
- Title: Advances in Machine Learning: Where Can Quantum Techniques Help?
- Authors: Samarth Kashyap, Rohit K Ramakrishnan, Kumari Jyoti, Apoorva D Patel,
- Abstract summary: Quantum Machine Learning (QML) represents a promising frontier at the intersection of quantum computing and artificial intelligence.<n>This review explores the potential of QML to address the computational bottlenecks of classical machine learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum Machine Learning (QML) represents a promising frontier at the intersection of quantum computing and artificial intelligence, aiming to leverage quantum computational advantages to enhance data-driven tasks. This review explores the potential of QML to address the computational bottlenecks of classical machine learning, particularly in processing complex datasets. We introduce the theoretical foundations of QML, including quantum data encoding, quantum learning theory and optimization techniques, while categorizing QML approaches based on data type and computational architecture. It is well-established that quantum computational advantages are problem-dependent, and so potentially useful directions for QML need to be systematically identified. Key developments, such as Quantum Principal Component Analysis, quantum-enhanced sensing and applications in material science, are critically evaluated for their theoretical speed-ups and practical limitations. The challenges posed by Noisy Intermediate-Scale Quantum (NISQ) devices, including hardware noise, scalability constraints and data encoding overheads, are discussed in detail. We also outline future directions, emphasizing the need for quantum-native algorithms, improved error correction, and realistic benchmarks to bridge the gap between theoretical promise and practical deployment. This comprehensive analysis underscores that while QML has significant potential for specific applications such as quantum chemistry and sensing, its broader utility in real-world scenarios remains contingent on overcoming technological and methodological hurdles.
Related papers
- Benchmarking fault-tolerant quantum computing hardware via QLOPS [2.0464713282534848]
To run quantum algorithms, it is essential to develop scalable quantum hardware with low noise levels.<n>Various fault-tolerant quantum computing schemes have been developed for different hardware platforms.<n>We propose Quantum Logical Operations Per Second (QLOPS) as a metric for assessing the performance of FTQC schemes.
arXiv Detail & Related papers (2025-07-16T08:31:51Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
Quantum Machine Learning represents a paradigm shift at the intersection of Quantum Computing and Machine Learning.<n>The field faces significant challenges, including hardware constraints, noise, and limited qubit coherence.<n>This survey aims to provide a foundational resource for advancing Quantum Machine Learning toward practical, real-world applications.
arXiv Detail & Related papers (2025-01-16T13:25:49Z) - Learning to Measure Quantum Neural Networks [10.617463958884528]
We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable.<n>Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters.<n>Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes.
arXiv Detail & Related papers (2025-01-10T02:28:19Z) - Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection [3.9554540293311864]
Quantum Machine Learning has shown promise in diverse applications such as environmental monitoring, healthcare diagnostics, and financial modeling.<n>One critical challenge is handling imbalanced datasets, where rare events are often misclassified due to skewed data distributions.<n>This paper introduces a Bayesian approach utilizing QBNs to classify satellite-derived imbalanced datasets, distinguishing oil-spill'' from non-spill'' regions.
arXiv Detail & Related papers (2024-12-24T15:44:26Z) - Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
Quantum Machine Learning (QML) has the potential of accelerating data analysis, especially for quantum data.
Here we review current methods and applications for QML.
We highlight differences between quantum and classical machine learning, with a focus on quantum neural networks and quantum deep learning.
arXiv Detail & Related papers (2023-03-16T17:10:39Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.