Quantum Multiple Kernel Learning in Financial Classification Tasks
- URL: http://arxiv.org/abs/2312.00260v1
- Date: Fri, 1 Dec 2023 00:18:43 GMT
- Title: Quantum Multiple Kernel Learning in Financial Classification Tasks
- Authors: Shungo Miyabe, Brian Quanz, Noriaki Shimada, Abhijit Mitra, Takahiro
Yamamoto, Vladimir Rastunkov, Dimitris Alevras, Mekena Metcalf, Daniel J.M.
King, Mohammad Mamouei, Matthew D. Jackson, Martin Brown, Philip Intallura,
and Jae-Eun Park
- Abstract summary: We propose a hybrid, quantum multiple kernel learning (QMKL) methodology that can improve classification quality over a single kernel approach.
We show QMKL on quantum hardware using an error mitigation pipeline and show the benefits of QMKL in the large qubit regime.
- Score: 2.8564636890651607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Financial services is a prospect industry where unlocked near-term quantum
utility could yield profitable potential, and, in particular, quantum machine
learning algorithms could potentially benefit businesses by improving the
quality of predictive models. Quantum kernel methods have demonstrated success
in financial, binary classification tasks, like fraud detection, and avoid
issues found in variational quantum machine learning approaches. However,
choosing a suitable quantum kernel for a classical dataset remains a challenge.
We propose a hybrid, quantum multiple kernel learning (QMKL) methodology that
can improve classification quality over a single kernel approach. We test the
robustness of QMKL on several financially relevant datasets using both fidelity
and projected quantum kernel approaches. We further demonstrate QMKL on quantum
hardware using an error mitigation pipeline and show the benefits of QMKL in
the large qubit regime.
Related papers
- QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Financial Fraud Detection: A Comparative Study of Quantum Machine
Learning Models [0.0]
The Quantum Support Vector model achieved the highest performance, with F1 scores of 0.98 0.98 for fraud and non-fraud classes.
The article provides solutions to overcome current limitations and contributes new insights to the field of Quantum Machine Learning in fraud detection.
arXiv Detail & Related papers (2023-08-09T21:47:50Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
Quantum Machine Learning (QML) has the potential of accelerating data analysis, especially for quantum data.
Here we review current methods and applications for QML.
We highlight differences between quantum and classical machine learning, with a focus on quantum neural networks and quantum deep learning.
arXiv Detail & Related papers (2023-03-16T17:10:39Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
arXiv Detail & Related papers (2022-11-08T18:36:25Z) - Parameterized Quantum Circuits with Quantum Kernels for Machine
Learning: A Hybrid Quantum-Classical Approach [0.8722210937404288]
Kernel ized Quantum Circuits (PQCs) are generally used in the hybrid approach to Quantum Machine Learning (QML)
We discuss some important aspects of PQCs with quantum kernels including PQCs, quantum kernels, quantum kernels with quantum advantage, and the trainability of quantum kernels.
arXiv Detail & Related papers (2022-09-28T22:14:41Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Deterministic and random features for large-scale quantum kernel machine [0.9404723842159504]
We show that the quantum kernel method (QKM) can be made scalable by using our proposed deterministic and random features.
Our numerical experiment, using datasets including $O(1,000) sim O(10,000)$ training data, supports the validity of our method.
arXiv Detail & Related papers (2022-09-05T13:22:34Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.