TransCAD: A Hierarchical Transformer for CAD Sequence Inference from Point Clouds
- URL: http://arxiv.org/abs/2407.12702v2
- Date: Thu, 18 Jul 2024 10:27:36 GMT
- Title: TransCAD: A Hierarchical Transformer for CAD Sequence Inference from Point Clouds
- Authors: Elona Dupont, Kseniya Cherenkova, Dimitrios Mallis, Gleb Gusev, Anis Kacem, Djamila Aouada,
- Abstract summary: 3D reverse engineering, in which a CAD model is inferred given a 3D scan of a physical object, is a promising research direction.
This paper proposes TransCAD, an end-to-end transformer-based architecture that predicts the CAD sequence from a point cloud.
- Score: 14.631669857987271
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 3D reverse engineering, in which a CAD model is inferred given a 3D scan of a physical object, is a research direction that offers many promising practical applications. This paper proposes TransCAD, an end-to-end transformer-based architecture that predicts the CAD sequence from a point cloud. TransCAD leverages the structure of CAD sequences by using a hierarchical learning strategy. A loop refiner is also introduced to regress sketch primitive parameters. Rigorous experimentation on the DeepCAD and Fusion360 datasets show that TransCAD achieves state-of-the-art results. The result analysis is supported with a proposed metric for CAD sequence, the mean Average Precision of CAD Sequence, that addresses the limitations of existing metrics.
Related papers
- CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images [69.7768227804928]
CADCrafter is an image-to-parametric CAD model generation framework that trains solely on synthetic textureless CAD data.
We introduce a geometry encoder to accurately capture diverse geometric features.
Our approach can robustly handle real unconstrained CAD images, and even generalize to unseen general objects.
arXiv Detail & Related papers (2025-04-07T06:01:35Z) - PHT-CAD: Efficient CAD Parametric Primitive Analysis with Progressive Hierarchical Tuning [52.681829043446044]
ParaCAD comprises over 10 million annotated drawings for training and 3,000 real-world industrial drawings with complex topological structures and physical constraints for test.
PHT-CAD is a novel 2D PPA framework that harnesses the modality alignment and reasoning capabilities of Vision-Language Models.
arXiv Detail & Related papers (2025-03-23T17:24:32Z) - CAD-Recode: Reverse Engineering CAD Code from Point Clouds [12.864274930732055]
3D CAD reverse engineering consists of reconstructing the sketch and CAD operation sequences from 3D representations such as point clouds.
The proposed CAD-Recode translates a point cloud into Python code that, when executed, reconstructs the CAD model.
We show that our CAD Python code output is interpretable by off-the-shelf LLMs, enabling CAD editing and CAD-specific question answering from point clouds.
arXiv Detail & Related papers (2024-12-18T16:55:42Z) - Text2CAD: Text to 3D CAD Generation via Technical Drawings [45.3611544056261]
Text2CAD is a novel framework that employs stable diffusion models tailored to automate the generation process.
We show that Text2CAD effectively generates technical drawings that are accurately translated into high-quality 3D CAD models.
arXiv Detail & Related papers (2024-11-09T15:12:06Z) - GenCAD: Image-Conditioned Computer-Aided Design Generation with Transformer-Based Contrastive Representation and Diffusion Priors [3.796768352477804]
The creation of manufacturable and editable 3D shapes through Computer-Aided Design (CAD) remains a highly manual and time-consuming task.
This paper introduces GenCAD, a generative model that employs autoregressive transformers with a contrastive learning framework and latent diffusion models to transform image inputs into parametric CAD command sequences.
arXiv Detail & Related papers (2024-09-08T23:49:11Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
We introduce geometric guidance into the reconstruction network PS-CAD.
We provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud.
Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces.
arXiv Detail & Related papers (2024-05-24T03:43:55Z) - P2CADNet: An End-to-End Reconstruction Network for Parametric 3D CAD
Model from Point Clouds [10.041481396324517]
This paper proposes an end-to-end network to reconstruct featured CAD model from point cloud (P2CADNet)
We evaluate P2CADNet on the public dataset, and the experimental results show that P2CADNet has excellent reconstruction quality and accuracy.
arXiv Detail & Related papers (2023-10-04T08:00:05Z) - SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude
Operations [21.000539206470897]
SECAD-Net is an end-to-end neural network aimed at reconstructing compact and easy-to-edit CAD models.
We show superiority over state-of-the-art alternatives including the closely related method for supervised CAD reconstruction.
arXiv Detail & Related papers (2023-03-19T09:26:03Z) - AutoCAD: Automatically Generating Counterfactuals for Mitigating
Shortcut Learning [70.70393006697383]
We present AutoCAD, a fully automatic and task-agnostic CAD generation framework.
In this paper, we present AutoCAD, a fully automatic and task-agnostic CAD generation framework.
arXiv Detail & Related papers (2022-11-29T13:39:53Z) - CADOps-Net: Jointly Learning CAD Operation Types and Steps from
Boundary-Representations [17.051792180335354]
This paper proposes a new deep neural network, CADOps-Net, that jointly learns the CAD operation types and the decomposition into different CAD operation steps.
Compared to existing datasets, the complexity and variety of CC3D-Ops models are closer to those used for industrial purposes.
arXiv Detail & Related papers (2022-08-22T19:12:20Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
The intuition of this work is to perceive the geometric inconsistency between the given meshes with the powerful self-attention mechanism.
We propose a novel geometry-contrastive Transformer that has an efficient 3D structured perceiving ability to the global geometric inconsistencies.
We present a latent isometric regularization module together with a novel semi-synthesized dataset for the cross-dataset 3D pose transfer task.
arXiv Detail & Related papers (2021-12-14T13:14:24Z) - Patch2CAD: Patchwise Embedding Learning for In-the-Wild Shape Retrieval
from a Single Image [58.953160501596805]
We propose a novel approach towards constructing a joint embedding space between 2D images and 3D CAD models in a patch-wise fashion.
Our approach is more robust than state of the art in real-world scenarios without any exact CAD matches.
arXiv Detail & Related papers (2021-08-20T20:58:52Z) - DeepCAD: A Deep Generative Network for Computer-Aided Design Models [37.655225142981564]
We present the first 3D generative model for a drastically different shape representation -- describing a shape as a sequence of computer-aided design (CAD) operations.
Drawing an analogy between CAD operations and natural language, we propose a CAD generative network based on the Transformer.
arXiv Detail & Related papers (2021-05-20T03:29:18Z) - Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD
Construction from Human Design Sequences [43.57844212541765]
We present the Fusion 360 Gallery, consisting of a simple language with just the sketch and extrude modeling operations.
We also present an interactive environment called the Fusion 360 Gym, which exposes the sequential construction of a CAD program as a Markov decision process.
arXiv Detail & Related papers (2020-10-05T23:18:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.