論文の概要: A Unifying Post-Processing Framework for Multi-Objective Learn-to-Defer Problems
- arxiv url: http://arxiv.org/abs/2407.12710v1
- Date: Wed, 17 Jul 2024 16:32:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 16:26:03.944014
- Title: A Unifying Post-Processing Framework for Multi-Objective Learn-to-Defer Problems
- Title(参考訳): 多目的ラーニング・ツー・Defer問題のためのポストプロシージャ統合フレームワーク
- Authors: Mohammad-Amin Charusaie, Samira Samadi,
- Abstract要約: Learn-to-Deferは、学習アルゴリズムが独立した作業ではなく、人間専門家のチームとして機能することを可能にするパラダイムである。
本稿では,様々な制約下での学習・遅延システムに対するベイズ最適解を求める。
本アルゴリズムは,一組のベースラインに対する制約違反による改善を示す。
- 参考スコア(独自算出の注目度): 6.046591474843391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learn-to-Defer is a paradigm that enables learning algorithms to work not in isolation but as a team with human experts. In this paradigm, we permit the system to defer a subset of its tasks to the expert. Although there are currently systems that follow this paradigm and are designed to optimize the accuracy of the final human-AI team, the general methodology for developing such systems under a set of constraints (e.g., algorithmic fairness, expert intervention budget, defer of anomaly, etc.) remains largely unexplored. In this paper, using a $d$-dimensional generalization to the fundamental lemma of Neyman and Pearson (d-GNP), we obtain the Bayes optimal solution for learn-to-defer systems under various constraints. Furthermore, we design a generalizable algorithm to estimate that solution and apply this algorithm to the COMPAS and ACSIncome datasets. Our algorithm shows improvements in terms of constraint violation over a set of baselines.
- Abstract(参考訳): Learn-to-Deferは、学習アルゴリズムが独立した作業ではなく、人間専門家のチームとして機能することを可能にするパラダイムである。
このパラダイムでは、システムのタスクのサブセットを専門家に委譲する。
現在、このパラダイムに従うシステムがあり、最終的な人間-AIチームの精度を最適化するために設計されているが、そのようなシステムを開発するための一般的な方法論(例えば、アルゴリズムの公正性、専門家の介入予算、異常の延期など)は、ほとんど探索されていないままである。
本稿では,Neyman and Pearson (d-GNP) の基本補題に対する$d$次元の一般化を用いて,様々な制約下での学習・推論システムに対するベイズ最適解を求める。
さらに,その解を推定する一般化可能なアルゴリズムを設計し,このアルゴリズムをCompASおよびACSIncomeデータセットに適用する。
本アルゴリズムは,一組のベースラインに対する制約違反による改善を示す。
関連論文リスト
- A naive aggregation algorithm for improving generalization in a class of learning problems [0.0]
本稿では,エキスパート・アドバイス・セッティングを用いた一般的な学習問題に対するナイーブ・アグリゲーション・アルゴリズムを提案する。
特に,高次元非線形関数をモデル化するための点推定の学習問題について考察する。
論文 参考訳(メタデータ) (2024-09-06T15:34:17Z) - Limits and Powers of Koopman Learning [0.0]
力学系は様々な科学にまたがって複雑で変化する振る舞いを研究する包括的方法を提供する。
クープマン作用素は、線形手法を用いた非線形力学の研究を可能にするため、支配的なアプローチとして現れてきた。
テキスト 動的システムの軌道データからクープマン作用素のスペクトル特性を頑健に学習することは可能か?
論文 参考訳(メタデータ) (2024-07-08T18:24:48Z) - Multiobjective Optimization Analysis for Finding Infrastructure-as-Code
Deployment Configurations [0.3774866290142281]
本稿では,インフラストラクチャ・アズ・コード配置に関する多目的問題に焦点をあてる。
本稿では,9種類の進化型多目的アルゴリズムについて述べる。
フリードマンの非パラメトリックテストを用いて, 独立ランニング後の各手法の結果を比較した。
論文 参考訳(メタデータ) (2024-01-18T13:55:32Z) - Interpretable Anomaly Detection via Discrete Optimization [1.7150329136228712]
本稿では,シーケンシャルデータから本質的に解釈可能な異常検出を学習するためのフレームワークを提案する。
この問題は計算的に困難であることを示し,制約最適化に基づく2つの学習アルゴリズムを開発した。
プロトタイプ実装を用いて,提案手法は精度とF1スコアの点で有望な結果を示す。
論文 参考訳(メタデータ) (2023-03-24T16:19:15Z) - Minimalistic Predictions to Schedule Jobs with Online Precedence
Constraints [117.8317521974783]
オンライン優先制約による非サーボ的スケジューリングについて検討する。
アルゴリズムは、任意のジョブ依存に偏りがなく、前任者がすべて完了した場合に限り、ジョブについて学習する。
論文 参考訳(メタデータ) (2023-01-30T13:17:15Z) - Human-Algorithm Collaboration: Achieving Complementarity and Avoiding
Unfairness [92.26039686430204]
慎重に設計されたシステムであっても、補完的な性能はあり得ないことを示す。
まず,簡単な人間アルゴリズムをモデル化するための理論的枠組みを提案する。
次に、このモデルを用いて相補性が不可能な条件を証明する。
論文 参考訳(メタデータ) (2022-02-17T18:44:41Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
強化学習(RL)のための様々なアルゴリズムは、その収束率の劇的な変動を問題構造の関数として示している。
この研究は、観察されたパフォーマンスの違いについて、textitexを説明する保証を提供する。
次の自然なステップは、これらの理論的保証を実際に有用なガイドラインに変換することです。
論文 参考訳(メタデータ) (2022-01-21T04:25:35Z) - Adaptive Discretization in Online Reinforcement Learning [9.560980936110234]
離散化に基づくアルゴリズムを設計する際の2つの大きな疑問は、離散化をどのように生成し、いつそれを洗練するかである。
オンライン強化学習のための木に基づく階層分割手法の統一的理論的解析を行う。
我々のアルゴリズムは操作制約に容易に適応し、我々の理論は3つの面のそれぞれに明示的な境界を与える。
論文 参考訳(メタデータ) (2021-10-29T15:06:15Z) - CoreDiag: Eliminating Redundancy in Constraint Sets [68.8204255655161]
最小コア(最小非冗長制約集合)の決定に利用できる新しいアルゴリズムを提案する。
このアルゴリズムは、冗長性の度合いが高い分散知識工学シナリオにおいて特に有用である。
本手法の適用可能性を示すために, 商業的構成知識ベースを用いた実証的研究を実施した。
論文 参考訳(メタデータ) (2021-02-24T09:16:10Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
本稿では,クラスタリングアルゴリズムのロバスト性をテストするために,ブラックボックス対逆攻撃法を提案する。
我々の攻撃は、SVM、ランダムフォレスト、ニューラルネットワークなどの教師付きアルゴリズムに対しても転送可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T18:19:31Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。