CEBench: A Benchmarking Toolkit for the Cost-Effectiveness of LLM Pipelines
- URL: http://arxiv.org/abs/2407.12797v1
- Date: Thu, 20 Jun 2024 21:36:00 GMT
- Title: CEBench: A Benchmarking Toolkit for the Cost-Effectiveness of LLM Pipelines
- Authors: Wenbo Sun, Jiaqi Wang, Qiming Guo, Ziyu Li, Wenlu Wang, Rihan Hai,
- Abstract summary: We introduce CEBench, an open-source toolkit for benchmarking online large language models.
It focuses on the critical trade-offs between expenditure and effectiveness required for LLM deployments.
This capability supports crucial decision-making processes aimed at maximizing effectiveness while minimizing cost impacts.
- Score: 29.25579967636023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online Large Language Model (LLM) services such as ChatGPT and Claude 3 have transformed business operations and academic research by effortlessly enabling new opportunities. However, due to data-sharing restrictions, sectors such as healthcare and finance prefer to deploy local LLM applications using costly hardware resources. This scenario requires a balance between the effectiveness advantages of LLMs and significant financial burdens. Additionally, the rapid evolution of models increases the frequency and redundancy of benchmarking efforts. Existing benchmarking toolkits, which typically focus on effectiveness, often overlook economic considerations, making their findings less applicable to practical scenarios. To address these challenges, we introduce CEBench, an open-source toolkit specifically designed for multi-objective benchmarking that focuses on the critical trade-offs between expenditure and effectiveness required for LLM deployments. CEBench allows for easy modifications through configuration files, enabling stakeholders to effectively assess and optimize these trade-offs. This strategic capability supports crucial decision-making processes aimed at maximizing effectiveness while minimizing cost impacts. By streamlining the evaluation process and emphasizing cost-effectiveness, CEBench seeks to facilitate the development of economically viable AI solutions across various industries and research fields. The code and demonstration are available in \url{https://github.com/amademicnoboday12/CEBench}.
Related papers
- COSMosFL: Ensemble of Small Language Models for Fault Localisation [11.720815956899116]
We present COSMos, a task-level LLM ensemble technique that uses voting mechanism.
We report the cost-benefit trade-off between LLM accuracy and various costs such as energy consumption, inference time, and the number of tokens used.
arXiv Detail & Related papers (2025-02-05T06:09:26Z) - CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing [56.98081258047281]
CITER enables efficient collaboration between small and large language models (SLMs & LLMs) through a token-level routing strategy.
We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation.
Our experiments show that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications.
arXiv Detail & Related papers (2025-02-04T03:36:44Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs)
RSD incorporates a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness.
RSD delivers significant efficiency gains against decoding with the target model only, while achieving significant better accuracy than parallel decoding method on average.
arXiv Detail & Related papers (2025-01-31T17:19:57Z) - The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
Large Language Models (LLMs) must balance between rejecting harmful requests for safety and accommodating legitimate ones for utility.
This paper presents a Direct Preference Optimization (DPO) based alignment framework that achieves better overall performance.
Our resulting model, LibraChem, outperforms leading LLMs including Claude-3, GPT-4o, and LLaMA-3 by margins of 13.44%, 7.16%, and 7.10% respectively.
arXiv Detail & Related papers (2025-01-20T06:35:01Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.
This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
A primary challenge in large language model (LLM) development is their onerous pre-training cost.
This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by leveraging a small language model (SLM)
arXiv Detail & Related papers (2024-10-24T14:31:52Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - EventChat: Implementation and user-centric evaluation of a large language model-driven conversational recommender system for exploring leisure events in an SME context [0.9999629695552196]
Large language models (LLMs) present an enormous evolution in the strategic potential of conversational recommender systems (CRS)
Yet, research has predominantly focused upon technical frameworks to implement LLM-driven CRS, rather than end-user evaluations or strategic implications for firms.
We detail the design of an LLM-driven CRS in an SME setting, and its subsequent performance in the field using both objective system metrics and subjective user evaluations.
arXiv Detail & Related papers (2024-07-05T12:42:31Z) - Assessing Economic Viability: A Comparative Analysis of Total Cost of Ownership for Domain-Adapted Large Language Models versus State-of-the-art Counterparts in Chip Design Coding Assistance [10.364901568556435]
This paper presents a comparative analysis of total cost of ownership (TCO) and performance between domain-adapted large language models (LLM) and state-of-the-art (SoTA) LLMs.
arXiv Detail & Related papers (2024-04-12T23:37:56Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
Large Language Models (LLMs) have significantly boosted performance in natural language processing (NLP) tasks.
The deployment of high-performance LLMs incurs substantial costs, primarily due to the increased number of parameters aimed at enhancing model performance.
We introduce SMART, a novel framework designed to minimize the inference costs of NLP tasks while ensuring sufficient result quality.
arXiv Detail & Related papers (2024-03-11T17:45:47Z) - On Leveraging Large Language Models for Enhancing Entity Resolution: A Cost-efficient Approach [7.996010840316654]
We propose an uncertainty reduction framework using Large Language Models (LLMs) to improve entity resolution results.
LLMs capitalize on their advanced linguistic capabilities and a pay-as-you-go'' model that provides significant advantages to those without extensive data science expertise.
We show that our method is efficient and effective, offering promising applications in real-world tasks.
arXiv Detail & Related papers (2024-01-07T09:06:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.