What to do if language models disagree? Black-box model ensembling for textual and visual question answering
- URL: http://arxiv.org/abs/2407.12841v1
- Date: Thu, 4 Jul 2024 12:59:10 GMT
- Title: What to do if language models disagree? Black-box model ensembling for textual and visual question answering
- Authors: Yuxi Xia, Kilm Zaporojets, Benjamin Roth,
- Abstract summary: We introduce InfoSel, a data-efficient and lightweight ensemble method that learns to pick the winner from existing black-box models.
We show that our approach achieves an absolute increase of up to +5.27% in the F1-score compared to standalone LLMs.
- Score: 2.1439084103679273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A diverse range of large language models (LLMs), e.g., ChatGPT, and visual question answering (VQA) models, e.g., BLIP, have been developed for solving textual and visual question answering tasks. However, both LLMs and VQA models encounter challenges when applied to task-specific datasets. Fine-tuning these models is either difficult, as it requires access via APIs, rendering them as black-boxes, or costly due to the need of tuning a large number of parameters. To address this, we introduce InfoSel, a data-efficient and lightweight ensemble method that learns to dynamically pick the winner from existing black-box models for predictions on both textual and multimodal visual question answering tasks. Unlike traditional ensemble models, InfoSel does not rely on prediction probabilities or confidences, which typically are not available in black-box models. Experimental results on four datasets demonstrate that our approach achieves an absolute increase of up to +5.27% in the F1-score compared to standalone LLMs. Remarkably, this improvement is achieved by utilizing only 1K training instances and 110M model parameters for training task-specific ensemble models.
Related papers
- Enabling Small Models for Zero-Shot Classification through Model Label Learning [50.68074833512999]
We introduce a novel paradigm, Model Label Learning (MLL), which bridges the gap between models and their functionalities.
Experiments on seven real-world datasets validate the effectiveness and efficiency of MLL.
arXiv Detail & Related papers (2024-08-21T09:08:26Z) - Testing the Limits of Unified Sequence to Sequence LLM Pretraining on
Diverse Table Data Tasks [2.690048852269647]
We study the advantages of a unified approach to table specific pretraining when scaled from 770M to 11B sequence to sequence models.
Our work is the first attempt at studying the advantages of a unified approach to table specific pretraining when scaled from 770M to 11B sequence to sequence models.
arXiv Detail & Related papers (2023-10-01T21:06:15Z) - UnIVAL: Unified Model for Image, Video, Audio and Language Tasks [105.77733287326308]
UnIVAL model goes beyond two modalities and unifies text, images, video, and audio into a single model.
Our model is efficiently pretrained on many tasks, based on task balancing and multimodal curriculum learning.
Thanks to the unified model, we propose a novel study on multimodal model merging via weight generalization.
arXiv Detail & Related papers (2023-07-30T09:48:36Z) - LLM2Loss: Leveraging Language Models for Explainable Model Diagnostics [5.33024001730262]
We propose an approach that can provide semantic insights into a model's patterns of failures and biases.
We show that an ensemble of such lightweight models can be used to generate insights on the performance of the black-box model.
arXiv Detail & Related papers (2023-05-04T23:54:37Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Zero-Shot Video Question Answering via Frozen Bidirectional Language
Models [89.71617065426146]
Video question answering (VideoQA) is a complex task that requires diverse multi-modal data for training.
Recent methods consider zero-shot settings with no manual annotation of visual question-answer.
We build on frozen autoregressive language models (BiLM) and show that such an approach provides a stronger and cheaper alternative for zero-shot VideoQA.
arXiv Detail & Related papers (2022-06-16T13:18:20Z) - A Comparative Study of Transformer-Based Language Models on Extractive
Question Answering [0.5079811885340514]
We train various pre-trained language models and fine-tune them on multiple question answering datasets.
Using the F1-score as our metric, we find that the RoBERTa and BART pre-trained models perform the best across all datasets.
arXiv Detail & Related papers (2021-10-07T02:23:19Z) - What do we expect from Multiple-choice QA Systems? [70.86513724662302]
We consider a top performing model on several Multiple Choice Question Answering (MCQA) datasets.
We evaluate it against a set of expectations one might have from such a model, using a series of zero-information perturbations of the model's inputs.
arXiv Detail & Related papers (2020-11-20T21:27:10Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.