論文の概要: InstructAV: Instruction Fine-tuning Large Language Models for Authorship Verification
- arxiv url: http://arxiv.org/abs/2407.12882v1
- Date: Tue, 16 Jul 2024 16:27:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 19:52:52.678244
- Title: InstructAV: Instruction Fine-tuning Large Language Models for Authorship Verification
- Title(参考訳): InstructAV:オーサリング検証のためのインストラクションファインタニング大型言語モデル
- Authors: Yujia Hu, Zhiqiang Hu, Chun-Wei Seah, Roy Ka-Wei Lee,
- Abstract要約: 本稿では,著者確認のための新しいアプローチであるInstructAVを紹介する。
このアプローチでは,パラメータ効率の細かいチューニング(PEFT)手法と併用して,精度と説明可能性の向上を図る。
- 参考スコア(独自算出の注目度): 9.151489275560413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable proficiency in a wide range of NLP tasks. However, when it comes to authorship verification (AV) tasks, which involve determining whether two given texts share the same authorship, even advanced models like ChatGPT exhibit notable limitations. This paper introduces a novel approach, termed InstructAV, for authorship verification. This approach utilizes LLMs in conjunction with a parameter-efficient fine-tuning (PEFT) method to simultaneously improve accuracy and explainability. The distinctiveness of InstructAV lies in its ability to align classification decisions with transparent and understandable explanations, representing a significant progression in the field of authorship verification. Through comprehensive experiments conducted across various datasets, InstructAV demonstrates its state-of-the-art performance on the AV task, offering high classification accuracy coupled with enhanced explanation reliability.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いNLPタスクにおいて顕著な習熟性を示している。
しかし、2つのテキストが同じ著者シップを共有しているかどうかを判断するオーサシップ検証(AV)タスクに関しては、ChatGPTのような先進的なモデルでさえ、顕著な制限がある。
本稿では,著者確認のための新しいアプローチであるInstructAVを紹介する。
このアプローチでは,パラメータ効率の細かいチューニング(PEFT)手法と併用して,精度と説明可能性の向上を図る。
InstructAVの特徴は、分類決定を透明で理解可能な説明と整合させる能力にある。
さまざまなデータセットにわたる包括的な実験を通じて、InstructAVはAVタスクにおける最先端のパフォーマンスを示し、高い分類精度と説明信頼性の強化を提供する。
関連論文リスト
- Automatic High-quality Verilog Assertion Generation through Subtask-Focused Fine-Tuned LLMs and Iterative Prompting [0.0]
高品質なシステムVerilog Assertions (SVA) を自動生成する大規模言語モデル(LLM)に基づくフローを提案する。
サブタスクに着目したファインチューニング手法を導入し,機能的に正しいアサーションの数を7.3倍に増やした。
実験では、このアプローチを使って構文エラーのないアサーション数が26%増加した。
論文 参考訳(メタデータ) (2024-11-23T03:52:32Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
本稿では,裁判所の手続きに先立って,警察の面接中に作成された文の分類に適した新しいデータセットを提案する。
本稿では,直感的文と真偽を区別し,最先端のパフォーマンスを実現するための微調整DistilBERTモデルを提案する。
我々はまた、法律専門家と非専門主義者の両方がシステムと対話し、利益を得ることを可能にするXAIインターフェースも提示する。
論文 参考訳(メタデータ) (2024-05-17T11:22:27Z) - Who Wrote it and Why? Prompting Large-Language Models for Authorship
Verification [9.751557360880204]
オーサシップ検証(AV)は自然言語処理(NLP)と計算言語学の基本的な課題である。
本稿では,AVのLarge-Language Models(LLMs)を利用した新しい手法であるPromptAVを提案する。
論文 参考訳(メタデータ) (2023-10-12T08:24:15Z) - Pink: Unveiling the Power of Referential Comprehension for Multi-modal
LLMs [49.88461345825586]
本稿では,MLLMの微細な画像理解能力を高めるための新しい枠組みを提案する。
本稿では,既存のデータセットのアノテーションを活用して,命令チューニングデータセットを低コストで構築する手法を提案する。
本研究では,Qwen-VLよりも5.2%精度が向上し,Kosmos-2の精度が24.7%向上したことを示す。
論文 参考訳(メタデータ) (2023-10-01T05:53:15Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
視覚言語による事前学習モデルでは、事前学習タスクと下流タスクのギャップを埋めるために、しばしば多くの学習可能なトークンを必要とする。
本稿では,効率的なVL転送学習を実現するために,APT(Approximated Prompt Tuning)アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-27T05:43:47Z) - Automated Few-shot Classification with Instruction-Finetuned Language
Models [76.69064714392165]
我々は、AuT-Fewが最先端の数ショット学習方法より優れていることを示す。
AuT-Few は RAFT few-shot ベンチマークにおいて,データセット間で最高のランク付け手法であることを示す。
論文 参考訳(メタデータ) (2023-05-21T21:50:27Z) - Interpretable Sentence Representation with Variational Autoencoders and
Attention [0.685316573653194]
自然言語処理(NLP)における近年の表現学習技術の解釈可能性を高める手法を開発した。
変動オートエンコーダ (VAEs) は, 遅延生成因子の観測に有効である。
帰納的バイアスを持つ2つのモデルを構築し、潜在表現の情報を注釈付きデータなしで理解可能な概念に分離する。
論文 参考訳(メタデータ) (2023-05-04T13:16:15Z) - Evidentiality-guided Generation for Knowledge-Intensive NLP Tasks [59.761411682238645]
Retrieval-augmented Generation Modelは、多くの知識集約型NLPタスクにまたがって最先端のパフォーマンスを示している。
生成器の訓練に、パスが出力をサポートするための正しい証拠を含むか否かに関わらず、パスの明快さを組み込む方法を導入する。
論文 参考訳(メタデータ) (2021-12-16T08:18:47Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
ラベル付きデータにはタスク関連情報が豊富に含まれており、言語モデルの素早い学習に有用であることが証明されている。
本研究では,言語モデルファインチューニングのための自己学習手法を再検討し,最先端のプロンプトベースの少ショット学習者,SFLMを提案する。
論文 参考訳(メタデータ) (2021-10-04T08:51:36Z) - Improving Authorship Verification using Linguistic Divergence [6.673132899229721]
事前学習した深層言語モデルを活用したオーサシップ検証タスクに対する教師なしソリューションを提案します。
提案するメトリクスは,事前学習した言語モデルと比較した2人の著者間の差異の尺度である。
論文 参考訳(メタデータ) (2021-03-12T03:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。