論文の概要: GeoGuide: Geometric guidance of diffusion models
- arxiv url: http://arxiv.org/abs/2407.12889v1
- Date: Wed, 17 Jul 2024 07:56:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 19:52:52.662936
- Title: GeoGuide: Geometric guidance of diffusion models
- Title(参考訳): GeoGuide:拡散モデルの幾何学的ガイダンス
- Authors: Mateusz Poleski, Jacek Tabor, Przemysław Spurek,
- Abstract要約: GeoGuideは、データ多様体から拡散モデルの軌道距離をトレースするガイダンスモデルである。
FIDスコアと生成された画像の品質の両方に関して、確率論的アプローチ ADM-G を超えている。
- 参考スコア(独自算出の注目度): 8.34616719984217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models are among the most effective methods for image generation. This is in particular because, unlike GANs, they can be easily conditioned during training to produce elements with desired class or properties. However, guiding a pre-trained diffusion model to generate elements from previously unlabeled data is significantly more challenging. One of the possible solutions was given by the ADM-G guiding approach. Although ADM-G successfully generates elements from the given class, there is a significant quality gap compared to a model originally conditioned on this class. In particular, the FID score obtained by the ADM-G-guided diffusion model is nearly three times lower than the class-conditioned guidance. We demonstrate that this issue is partly due to ADM-G providing minimal guidance during the final stage of the denoising process. To address this problem, we propose GeoGuide, a guidance model based on tracing the distance of the diffusion model's trajectory from the data manifold. The main idea of GeoGuide is to produce normalized adjustments during the backward denoising process. As shown in the experiments, GeoGuide surpasses the probabilistic approach ADM-G with respect to both the FID scores and the quality of the generated images.
- Abstract(参考訳): 拡散モデルは画像生成の最も効果的な方法の一つである。
これは特に、GANとは異なり、トレーニング中は容易に条件付きで、望ましいクラスやプロパティを持つ要素を生成することができるためである。
しかし、事前学習した拡散モデルを用いてラベルなしデータから要素を生成することは、はるかに困難である。
考えられる解決策の1つは、ADM-G誘導法である。
ADM-Gは、与えられたクラスから要素をうまく生成するが、もともとこのクラスに規定されていたモデルと比較して、大きな品質差がある。
特に, ADM-G誘導拡散モデルにより得られたFIDスコアは, クラス条件のガイダンスよりも約3倍低い。
ADM-Gは, 復調過程の最終段階において, 最小限のガイダンスを提供するため, この問題が原因であることが実証された。
この問題を解決するために,データ多様体から拡散モデルの軌道距離を追従するガイダンスモデルGeoGuideを提案する。
GeoGuideの主な考え方は、後方除音プロセス中に正規化された調整を生成することである。
実験で示されたように、GeoGuideはFIDスコアと生成された画像の品質の両方に関して確率論的アプローチであるADM-Gを上回っている。
関連論文リスト
- IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
グラフ生成モデルは,1行にグラフを生成するワンショットモデルと,ノードとエッジの連続的な付加によるグラフを生成するシーケンシャルモデルという,2つの顕著なファミリーに分類される。
本稿では,逐次度を規定するグラフ生成モデルであるInsert-Fill-Halt(IFH)を提案する。
論文 参考訳(メタデータ) (2024-08-23T16:24:40Z) - DGInStyle: Domain-Generalizable Semantic Segmentation with Image Diffusion Models and Stylized Semantic Control [68.14798033899955]
大規模で事前訓練された潜伏拡散モデル(LDM)は、創造的コンテンツを生成できる異常な能力を示した。
しかし、それらは例えば、セマンティックセグメンテーションのような知覚スタックのタスクを改善するために、大規模なデータジェネレータとして使用できますか?
自律運転の文脈でこの疑問を考察し、「はい」という言い換えで答える。
論文 参考訳(メタデータ) (2023-12-05T18:34:12Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - Deep Manifold Learning with Graph Mining [80.84145791017968]
グラフマイニングのための非段階的決定層を持つ新しいグラフ深層モデルを提案する。
提案モデルでは,現行モデルと比較して最先端性能を実現している。
論文 参考訳(メタデータ) (2022-07-18T04:34:08Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - PLACE dropout: A Progressive Layer-wise and Channel-wise Dropout for
Domain Generalization [29.824723021053565]
ドメイン一般化(DG)は、複数の観測されたソースドメインからジェネリックモデルを学ぶことを目的としている。
DGの最大の課題は、ソースとターゲットドメイン間のドメインギャップのため、このモデルが必然的に過度にオーバーフィットする問題に直面していることだ。
そこで我々は,DGのための新しいレイヤワイド・チャネルワイド・ドロップアウトを開発し,各レイヤをランダムに選択し,そのチャネルをランダムに選択してドロップアウトを行う。
論文 参考訳(メタデータ) (2021-12-07T13:23:52Z) - Guided Integrated Gradients: An Adaptive Path Method for Removing Noise [9.792727625917083]
統合グラディエンツ(IG)は、ディープニューラルネットワークのための一般的な特徴属性法である。
問題の原因の1つは、IG経路に沿ったノイズの蓄積である。
我々は、帰属経路自体に適応することを提案し、画像だけでなく、説明されるモデルにも経路を条件付けする。
論文 参考訳(メタデータ) (2021-06-17T20:00:55Z) - Scalable Semi-supervised Landmark Localization for X-ray Images using
Few-shot Deep Adaptive Graph [19.588348005574165]
完全に監視されたグラフベースの方法であるDAGに基づいて、少数のショットDAGと呼ばれる半監視された拡張を提案しました。
まず、ラベル付きデータ上でDAGモデルをトレーニングし、教師のSSLメカニズムを使用してラベル付きデータ上で事前トレーニングされたモデルを微調整する。
骨盤,手指,胸部ランドマーク検出タスクについて広範囲に検討を行った。
論文 参考訳(メタデータ) (2021-04-29T19:46:18Z) - Demonstrating the Evolution of GANs through t-SNE [0.4588028371034407]
COEGANのような進化的アルゴリズムは、最近、GANトレーニングを改善するソリューションとして提案されている。
本研究では, t-distributed Neighbour Embedding (t-SNE) を用いたGANの進展評価手法を提案する。
結果の t-SNE マップと Jaccard インデックスに基づく計量をモデル品質を表すために提案する。
論文 参考訳(メタデータ) (2021-01-31T20:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。