KiGRAS: Kinematic-Driven Generative Model for Realistic Agent Simulation
- URL: http://arxiv.org/abs/2407.12940v1
- Date: Wed, 17 Jul 2024 18:12:11 GMT
- Title: KiGRAS: Kinematic-Driven Generative Model for Realistic Agent Simulation
- Authors: Jianbo Zhao, Jiaheng Zhuang, Qibin Zhou, Taiyu Ban, Ziyao Xu, Hangning Zhou, Junhe Wang, Guoan Wang, Zhiheng Li, Bin Li,
- Abstract summary: Trajectory generation is a pivotal task in autonomous driving.
Recent studies have introduced the autoregressive paradigm.
We propose the Kinematic-Driven Generative Model for Realistic Agent Simulation.
- Score: 17.095651262950568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory generation is a pivotal task in autonomous driving. Recent studies have introduced the autoregressive paradigm, leveraging the state transition model to approximate future trajectory distributions. This paradigm closely mirrors the real-world trajectory generation process and has achieved notable success. However, its potential is limited by the ineffective representation of realistic trajectories within the redundant state space. To address this limitation, we propose the Kinematic-Driven Generative Model for Realistic Agent Simulation (KiGRAS). Instead of modeling in the state space, KiGRAS factorizes the driving scene into action probability distributions at each time step, providing a compact space to represent realistic driving patterns. By establishing physical causality from actions (cause) to trajectories (effect) through the kinematic model, KiGRAS eliminates massive redundant trajectories. All states derived from actions in the cause space are constrained to be physically feasible. Furthermore, redundant trajectories representing identical action sequences are mapped to the same representation, reflecting their underlying actions. This approach significantly reduces task complexity and ensures physical feasibility. KiGRAS achieves state-of-the-art performance in Waymo's SimAgents Challenge, ranking first on the WOMD leaderboard with significantly fewer parameters than other models. The video documentation is available at \url{https://kigras-mach.github.io/KiGRAS/}.
Related papers
- Rolling Ahead Diffusion for Traffic Scene Simulation [13.900806577888861]
Realistic driving simulation requires that NPCs not only mimic natural driving behaviors but also react to the behavior of other simulated agents.
Recent developments in diffusion-based scenario generation focus on creating diverse and realistic traffic scenarios.
We present a rolling diffusion based traffic scene generation model which mixes the benefits of both methods.
arXiv Detail & Related papers (2025-02-13T18:45:56Z) - AA-SGAN: Adversarially Augmented Social GAN with Synthetic Data [9.108224187521287]
We propose a method to augment synthetic trajectories at training time and with an adversarial approach.
We show that trajectory augmentation at training time unleashes significant gains when a state-of-the-art generative model is evaluated over real-world trajectories.
arXiv Detail & Related papers (2024-12-23T23:17:44Z) - Bench2Drive-R: Turning Real World Data into Reactive Closed-Loop Autonomous Driving Benchmark by Generative Model [63.336123527432136]
We introduce Bench2Drive-R, a generative framework that enables reactive closed-loop evaluation.
Unlike existing video generative models for autonomous driving, the proposed designs are tailored for interactive simulation.
We compare the generation quality of Bench2Drive-R with existing generative models and achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-12-11T06:35:18Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - SceneDM: Scene-level Multi-agent Trajectory Generation with Consistent
Diffusion Models [10.057312592344507]
We propose a novel framework based on diffusion models, called SceneDM, to generate joint and consistent future motions of all the agents in a scene.
SceneDM achieves state-of-the-art results on the Sim Agents Benchmark.
arXiv Detail & Related papers (2023-11-27T11:39:27Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
We propose a novel generative flow based framework with dual graphormer for pedestrian trajectory prediction (STGlow)
Our method can more precisely model the underlying data distribution by optimizing the exact log-likelihood of motion behaviors.
Experimental results on several benchmarks demonstrate that our method achieves much better performance compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-21T07:29:24Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z) - RTGNN: A Novel Approach to Model Stochastic Traffic Dynamics [9.267045415696263]
We propose a new traffic model, Recurrent Traffic Graph Neural Network (RTGNN)
RTGNN is a Markovian model and is able to infer future traffic states conditioned on the motion of the ego vehicle.
We explicitly model the hidden states of agents, "intentions," as part of the traffic state to reflect the inherent partial observability of traffic dynamics.
arXiv Detail & Related papers (2022-02-21T03:55:00Z) - Motion Deblurring with Real Events [50.441934496692376]
We propose an end-to-end learning framework for event-based motion deblurring in a self-supervised manner.
Real-world events are exploited to alleviate the performance degradation caused by data inconsistency.
arXiv Detail & Related papers (2021-09-28T13:11:44Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.