RTGNN: A Novel Approach to Model Stochastic Traffic Dynamics
- URL: http://arxiv.org/abs/2202.09977v1
- Date: Mon, 21 Feb 2022 03:55:00 GMT
- Title: RTGNN: A Novel Approach to Model Stochastic Traffic Dynamics
- Authors: Ke Sun, Stephen Chaves, Paul Martin, Vijay Kumar
- Abstract summary: We propose a new traffic model, Recurrent Traffic Graph Neural Network (RTGNN)
RTGNN is a Markovian model and is able to infer future traffic states conditioned on the motion of the ego vehicle.
We explicitly model the hidden states of agents, "intentions," as part of the traffic state to reflect the inherent partial observability of traffic dynamics.
- Score: 9.267045415696263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling stochastic traffic dynamics is critical to developing self-driving
cars. Because it is difficult to develop first principle models of cars driven
by humans, there is great potential for using data driven approaches in
developing traffic dynamical models. While there is extensive literature on
this subject, previous works mainly address the prediction accuracy of
data-driven models. Moreover, it is often difficult to apply these models to
common planning frameworks since they fail to meet the assumptions therein. In
this work, we propose a new stochastic traffic model, Recurrent Traffic Graph
Neural Network (RTGNN), by enforcing additional structures on the model so that
the proposed model can be seamlessly integrated with existing motion planning
algorithms. RTGNN is a Markovian model and is able to infer future traffic
states conditioned on the motion of the ego vehicle. Specifically, RTGNN uses a
definition of the traffic state that includes the state of all players in a
local region and is therefore able to make joint predictions for all agents of
interest. Meanwhile, we explicitly model the hidden states of agents,
"intentions," as part of the traffic state to reflect the inherent partial
observability of traffic dynamics. The above mentioned properties are critical
for integrating RTGNN with motion planning algorithms coupling prediction and
decision making. Despite the additional structures, we show that RTGNN is able
to achieve state-of-the-art accuracy through comparisons with other similar
works.
Related papers
- High-Order Evolving Graphs for Enhanced Representation of Traffic Dynamics [4.856478623606766]
We present an innovative framework for traffic dynamics analysis using High-Order Evolving Graphs, designed to improve representations in autonomous driving.
Our approach constructs bidirectional temporal bipartite graphs that effectively model the complex interactions within traffic scenes in real-time.
arXiv Detail & Related papers (2024-09-17T14:00:58Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Attention-based Spatial-Temporal Graph Neural ODE for Traffic Prediction [3.4806267677524896]
We propose attention-based graph neural ODE (AST) that explicitly learns the dynamics of the traffic system.
Our model aggregates traffic patterns of different periods and has satisfactory performance on two real-world traffic data sets.
arXiv Detail & Related papers (2023-05-01T00:58:48Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - A spatial-temporal short-term traffic flow prediction model based on
dynamical-learning graph convolution mechanism [0.0]
Short-term traffic flow prediction is a vital branch of the Intelligent Traffic System (ITS) and plays an important role in traffic management.
Graph convolution network (GCN) is widely used in traffic prediction models to better deal with the graphical structure data of road networks.
To deal with this drawback, this paper proposes a novel location graph convolutional network (Location-GCN)
arXiv Detail & Related papers (2022-05-10T09:19:12Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense.
This paper develops a graph network (GN)-based deep learning model LocaleGn that depicts the traffic dynamics using localized data.
It is also demonstrated that the learned knowledge from LocaleGn can be transferred across cities.
arXiv Detail & Related papers (2022-03-08T09:46:50Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.