論文の概要: Universal Facial Encoding of Codec Avatars from VR Headsets
- arxiv url: http://arxiv.org/abs/2407.13038v1
- Date: Wed, 17 Jul 2024 22:08:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 19:13:43.399640
- Title: Universal Facial Encoding of Codec Avatars from VR Headsets
- Title(参考訳): VRヘッドセットからのコーデックアバターの普遍的顔符号化
- Authors: Shaojie Bai, Te-Li Wang, Chenghui Li, Akshay Venkatesh, Tomas Simon, Chen Cao, Gabriel Schwartz, Ryan Wrench, Jason Saragih, Yaser Sheikh, Shih-En Wei,
- Abstract要約: コンシューマー向けVRヘッドセットのヘッドマウントカメラ(HMC)を用いて,光リアルアバターをリアルタイムにアニメーションする手法を提案する。
本稿では,実行時の効率向上に最小限のコストで精度を高める軽量な式キャリブレーション機構を提案する。
- 参考スコア(独自算出の注目度): 32.60236093340087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Faithful real-time facial animation is essential for avatar-mediated telepresence in Virtual Reality (VR). To emulate authentic communication, avatar animation needs to be efficient and accurate: able to capture both extreme and subtle expressions within a few milliseconds to sustain the rhythm of natural conversations. The oblique and incomplete views of the face, variability in the donning of headsets, and illumination variation due to the environment are some of the unique challenges in generalization to unseen faces. In this paper, we present a method that can animate a photorealistic avatar in realtime from head-mounted cameras (HMCs) on a consumer VR headset. We present a self-supervised learning approach, based on a cross-view reconstruction objective, that enables generalization to unseen users. We present a lightweight expression calibration mechanism that increases accuracy with minimal additional cost to run-time efficiency. We present an improved parameterization for precise ground-truth generation that provides robustness to environmental variation. The resulting system produces accurate facial animation for unseen users wearing VR headsets in realtime. We compare our approach to prior face-encoding methods demonstrating significant improvements in both quantitative metrics and qualitative results.
- Abstract(参考訳): アバターを介するバーチャルリアリティ(VR)のテレプレゼンスには、忠実なリアルタイム顔アニメーションが不可欠である。
アバターアニメーションは、数ミリ秒以内に極端な表現と微妙な表現の両方をキャプチャして、自然な会話のリズムを維持することができる。
顔の斜めと不完全な視界、ヘッドセットのドッキングにおける可変性、環境による照明の変動は、目に見えない顔への一般化においてユニークな課題である。
本稿では,消費者向けVRヘッドセットのヘッドマウントカメラ(HMC)を用いて,リアルアバターをリアルタイムにアニメーションする手法を提案する。
本稿では,クロスビューな再構築目標に基づく自己指導型学習手法を提案する。
本稿では,実行時の効率向上に最小限のコストで精度を高める軽量な式キャリブレーション機構を提案する。
本研究では, 環境変動に対するロバスト性を実現するために, 精密な地中構造生成のためのパラメータ化を改良した。
このシステムは、VRヘッドセットを装着した未確認ユーザに対して、リアルタイムに正確な顔アニメーションを生成する。
我々は,従来の顔符号化手法と比較し,定量的な測定値と定性的な結果の両方において有意な改善が示された。
関連論文リスト
- GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
マルチビュー画像から高ダイナミックで変形可能な人間の頭部アバターをリアルタイムで生成する手法を提案する。
本手法のコアとなるのは,顔表情と頭部運動の複雑なダイナミクスを捉えることができる頭部モデルの階層的表現である。
我々は、この粗い顔アバターモデルを、エンドツーエンドのフレームワークで学習可能なパラメータとして頭部ポーズとともに訓練する。
論文 参考訳(メタデータ) (2024-09-18T13:05:43Z) - VASA-1: Lifelike Audio-Driven Talking Faces Generated in Real Time [35.43018966749148]
静止画像と音声音声クリップを1つずつ与えることで,視覚的情緒的スキル(VAS)をアピールするライフライクな発話顔を生成するためのフレームワークであるVASAを紹介した。
VASA-1は、音声と精巧に同期する唇の動きを発生させるだけでなく、顔のニュアンスや自然な頭部の動きを生じさせる。
論文 参考訳(メタデータ) (2024-04-16T15:43:22Z) - Bring Your Own Character: A Holistic Solution for Automatic Facial
Animation Generation of Customized Characters [24.615066741391125]
仮想顔を自動的にアニメーションする総合的なソリューションを提案する。
深層学習モデルはまず、入力された顔画像から仮想人間の顔への表情の再ターゲティングを訓練した。
Unity 3Dを使った実用的なツールキットが開発され、最も人気のあるVRアプリケーションと互換性がある。
論文 参考訳(メタデータ) (2024-02-21T11:35:20Z) - Attention-Based VR Facial Animation with Visual Mouth Camera Guidance
for Immersive Telepresence Avatars [19.70403947793871]
本稿では,マウスカメラのキーポイントと直接視覚誘導を併用したハイブリッド手法を提案する。
提案手法は,未知の演算子に一般化され,短いビデオ2本をキャプチャして簡単なエンロラメントステップのみを必要とする。
我々は、ANAアバターXPRIZEファイナルでの勝利に顔のアニメーションがどう貢献したかを強調した。
論文 参考訳(メタデータ) (2023-12-15T12:45:11Z) - VR Facial Animation for Immersive Telepresence Avatars [25.506570225219406]
VRヘッドセットが装着されている場合でも、顔の鮮明な視界を必要とするアプリケーションには、VR顔アニメーションが必要である。
特定の演算子に対して非常に高速な適応が可能なリアルタイム能動パイプラインを提案する。
1分以内でトレーニングできる視線追跡パイプラインを実演します。
論文 参考訳(メタデータ) (2023-04-24T12:43:51Z) - Drivable Volumetric Avatars using Texel-Aligned Features [52.89305658071045]
光テレプレゼンスは、動的に合成された外観を実現するために、高忠実度ボディモデリングと忠実な運転の両方を必要とする。
本稿では,現実人のフルボディアバターをモデリングし,駆動する際の2つの課題に対処するエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-20T09:28:16Z) - Robust Egocentric Photo-realistic Facial Expression Transfer for Virtual
Reality [68.18446501943585]
ソーシャルな存在は、バーチャルリアリティー(VR)におけるデジタル人間による次世代コミュニケーションシステムを支える
最高の3DビデオリアルVRアバターは、人固有の(PS)モデルに依存します。
本稿では,エンドツーエンドのマルチアイデンティティアーキテクチャを提案することで,これらの制限を克服する。
論文 参考訳(メタデータ) (2021-04-10T15:48:53Z) - Pixel Codec Avatars [99.36561532588831]
Pixel Codec Avatars(PiCA)は、3D人間の顔の深い生成モデルです。
oculus quest 2のモバイルvrヘッドセットでは、同じシーンで5つのアバターがリアルタイムでレンダリングされる。
論文 参考訳(メタデータ) (2021-04-09T23:17:36Z) - High-fidelity Face Tracking for AR/VR via Deep Lighting Adaptation [117.32310997522394]
3Dビデオアバターは、圧縮、プライバシー、エンターテイメント、AR/VRにおける存在感を提供することで、仮想コミュニケーションを強化することができる。
既存の人物固有の3dモデルは照明に頑健ではないため、その結果は通常微妙な顔の振る舞いを見逃し、アバターにアーティファクトを引き起こす。
本論文では,高品質の3D顔追跡アルゴリズムを組み合わせたディープラーニング照明モデルを用いて,通常の映像から3Dフォトリアリズムアバターへの微妙かつ堅牢な顔の動き伝達手法を提案する。
論文 参考訳(メタデータ) (2021-03-29T18:33:49Z) - Audio- and Gaze-driven Facial Animation of Codec Avatars [149.0094713268313]
音声および/またはアイトラッキングを用いて,コーデックアバターをリアルタイムにアニメーション化するための最初のアプローチについて述べる。
私たちのゴールは、重要な社会的シグナルを示す個人間の表現力のある会話を表示することです。
論文 参考訳(メタデータ) (2020-08-11T22:28:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。