論文の概要: Establishing Knowledge Preference in Language Models
- arxiv url: http://arxiv.org/abs/2407.13048v1
- Date: Wed, 17 Jul 2024 23:16:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 19:13:43.384536
- Title: Establishing Knowledge Preference in Language Models
- Title(参考訳): 言語モデルにおける知識嗜好の確立
- Authors: Sizhe Zhou, Sha Li, Yu Meng, Yizhu Jiao, Heng Ji, Jiawei Han,
- Abstract要約: 言語モデルは事前学習を通じて大量の事実知識を符号化することが知られている。
このような知識はユーザーからの要求に応えるには不十分かもしれない。
進行中のイベントに関する質問に答える場合には、最新のニュース記事を使って回答を更新する必要がある。
ある事実がモデルで編集されると、更新された事実はモデルによって学習されたすべての事前知識をオーバーライドする。
- 参考スコア(独自算出の注目度): 80.70632813935644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models are known to encode a great amount of factual knowledge through pretraining. However, such knowledge might be insufficient to cater to user requests, requiring the model to integrate external knowledge sources and adhere to user-provided specifications. When answering questions about ongoing events, the model should use recent news articles to update its response; when asked to provide recommendations, the model should prioritize user specifications over retrieved product reviews; when some facts are edited in the model, the updated facts should override all prior knowledge learned by the model even if they are conflicting. In all of the cases above, the model faces a decision between its own parametric knowledge, (retrieved) contextual knowledge, and user instruction knowledge. In this paper, we (1) unify such settings into the problem of knowledge preference and define a three-level preference hierarchy over these knowledge sources; (2) compile a collection of existing datasets IfQA, MQuAKE, and MRQA covering a combination of settings (with/without user specifications, with/without context documents) to systematically evaluate how well models obey the intended knowledge preference; and (3) propose a dataset synthesis method that composes diverse question-answer pairs with user assumptions and related context to directly fine-tune LMs for instilling the hierarchy of knowledge. We demonstrate that a 7B model, fine-tuned on only a few thousand examples automatically generated by our proposed method, effectively achieves superior performance (more than 18% improvement across all evaluation benchmarks) in adhering to the desired knowledge preference hierarchy.
- Abstract(参考訳): 言語モデルは事前学習を通じて大量の事実知識を符号化することが知られている。
しかし、そのような知識はユーザーからの要求を満たすには不十分であり、モデルが外部の知識ソースを統合し、ユーザーが提供する仕様に従う必要がある。
進行中のイベントに関する質問に答える場合、モデルは、最新のニュース記事を使って、その反応を更新する;レコメンデーションを提供する; モデルは、検索された製品レビューよりも、ユーザー仕様を優先する; ある事実がモデルで編集されると、更新された事実は、たとえ矛盾しているとしても、モデルによって学習されたすべての事前知識をオーバーライドする。
上記のすべてのケースにおいて、モデルは、自身のパラメトリック知識、(検索された)文脈知識、およびユーザー教育知識の間の決定に直面します。
本稿では,(1)そのような設定を知識嗜好の問題に統一し,これらの知識ソースに対して3段階の嗜好階層を定義し,(2)既存のデータセットのコレクションであるifQA,MQuAKE,MRQAをコンパイルして,意図した知識嗜好にどのように順応するかを体系的に評価する。
提案手法によって自動生成される数千個のサンプルを微調整した 7B モデルが,所望の知識嗜好階層に適応する上で,より優れた性能(全評価ベンチマークにおいて18%以上の改善)を効果的に達成できることを実証した。
関連論文リスト
- Gradual Learning: Optimizing Fine-Tuning with Partially Mastered Knowledge in Large Language Models [51.20499954955646]
大規模言語モデル(LLM)は、事前学習期間中に大量のテキストコーパスから膨大な量の知識を取得する。
微調整や推論のような後段では、モデルは初期訓練でカバーされていない知識に遭遇する可能性がある。
本稿では,モデル全体のテスト精度と知識保持性を改善するための2段階の微調整戦略を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:35:16Z) - Towards Better Generalization in Open-Domain Question Answering by Mitigating Context Memorization [67.92796510359595]
Open-Domain Question Answering (OpenQA)は、外部の大規模知識コーパスで事実質問に答えることを目的としている。
OpenQAモデルが完全に新しい知識ドメインにどの程度うまく移行できるかは、まだ不明である。
コーパス不変チューニング(CIT: Corpus-Invariant Tuning)は,記憶過剰な知識の軽減を目的とした,シンプルで効果的なトレーニング戦略である。
論文 参考訳(メタデータ) (2024-04-02T05:44:50Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
LLM編集のスケーラビリティと堅牢性を向上させるため,EREN(Reading Notesによる編集モデル)を提案する。
既存の技術とは異なり、複数の編集から知識を統合することができ、構文的に類似しているが意味的に無関係な入力に正しく反応する。
論文 参考訳(メタデータ) (2024-03-26T06:57:23Z) - Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering [26.34649731975005]
Retriever-augmented instruction-following modelは、質問応答のための微調整アプローチ(QA)の魅力的な代替品である
モデル応答は自然で流動的である傾向にあるが、追加の冗長性により、モデルパフォーマンスを正確に定量化するために従来のQA評価指標は信頼できない。
1) ユーザの情報要求(正確性)をどの程度満足させるか,2) 提供された知識(忠実性)に基づいて応答を生成するか,という2つの次元に沿って,これらのモデルを評価するために,自動評価と人的評価の両方を用いる。
論文 参考訳(メタデータ) (2023-07-31T17:41:00Z) - Task Oriented Conversational Modelling With Subjective Knowledge [0.0]
DSTC-11は、ターン検出、知識選択、応答生成を求める知識からなる3段階パイプラインを提案する。
本稿では,正確で高速な知識検索を実現するエンティティ検索手法を提案する。
予備的な結果から,知識選択作業における一致点の精度は4%向上した。
論文 参考訳(メタデータ) (2023-03-30T20:23:49Z) - The KITMUS Test: Evaluating Knowledge Integration from Multiple Sources
in Natural Language Understanding Systems [87.3207729953778]
我々は、データセット上で最先端のコア参照解決モデルを評価する。
いくつかのモデルは、事前訓練時間と推論時間の両方で観察された知識について、オンザフライで推論するのに苦労している。
それでも、最高のパフォーマンスモデルでさえ、推論時にのみ提示される知識を確実に統合するのは難しいようです。
論文 参考訳(メタデータ) (2022-12-15T23:26:54Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog [12.081212540168055]
本稿では,SeKnow が作成した MutliWOZ ベースのデータセットの修正版について述べる。
事前訓練された言語モデルを利用する最近の作業に合わせて、知識ソースをクエリするタスクのプロンプトを使用してBARTベースのモデルを微調整する。
我々は,本モデルが知識モダリティ(情報源)の摂動に頑健であり,構造化知識と非構造化知識とを融合して応答を生成できることを実証した。
論文 参考訳(メタデータ) (2022-10-13T18:49:59Z) - Variational Learning for Unsupervised Knowledge Grounded Dialogs [6.761874595503588]
知識基底ダイアログの最近の手法は,外部文書からの情報を取り入れて応答を生成する。
我々は上記の手法に対する変分的アプローチを開発し、代わりにエビデンスローバウンド(ELBO)を最大化する。
我々の知識を最大限に活用するために、我々は、オープンスケールの教師なし知識ベースダイアログシステムに変分訓練を適用した最初の人物である。
論文 参考訳(メタデータ) (2021-11-23T13:41:03Z) - REALM: Retrieval-Augmented Language Model Pre-Training [37.3178586179607]
言語モデルの事前学習を潜伏知識検索システムで強化し,ウィキペディアのような大規模コーパスから文書を検索し,出席できるようにする。
本研究では,このような知識検索を教師なしで事前学習する方法を初めて示す。
オープンドメイン質問回答(Open-QA)の課題を微調整し,検索型言語モデル事前学習(REALM)の有効性を実証する。
論文 参考訳(メタデータ) (2020-02-10T18:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。