論文の概要: HPPP: Halpern-type Preconditioned Proximal Point Algorithms and Applications to Image Restoration
- arxiv url: http://arxiv.org/abs/2407.13120v5
- Date: Fri, 04 Jul 2025 02:26:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 17:51:39.221001
- Title: HPPP: Halpern-type Preconditioned Proximal Point Algorithms and Applications to Image Restoration
- Title(参考訳): HPPP:Halpern-type Preconditioned Proximal Point Algorithmsと画像復元への応用
- Authors: Shuchang Zhang, Hui Zhang, Hongxia Wang,
- Abstract要約: 本稿ではHalpernのHilbert法の強収束特性と加速度特性を利用するHalpern型PPP(HPPP)アルゴリズムを提案する。
最後に,HP アルゴリズムとPlugPlay (PP) プリエントのようなデノイザプリエントを併用することにより,画像復元のための新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 7.614347936574962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the degenerate preconditioned proximal point (PPP) method provides a unified and flexible framework for designing and analyzing operator-splitting algorithms such as Douglas-Rachford (DR). However, the degenerate PPP method exhibits weak convergence in the infinite-dimensional Hilbert space and lacks accelerated variants. To address these issues, we propose a Halpern-type PPP (HPPP) algorithm, which leverages the strong convergence and acceleration properties of Halpern's iteration method. Moreover, we propose a novel algorithm for image restoration by combining HPPP with denoiser priors such as Plug-and-Play (PnP) prior, which can be viewed as an accelerated PnP method. Finally, numerical experiments including several toy examples and image restoration validate the effectiveness of our proposed algorithms.
- Abstract(参考訳): 近年、退化事前条件付き近位点(PPP)法は、ダグラス・ラフフォード(DR)のような演算子分割アルゴリズムを設計・解析するための統一的で柔軟なフレームワークを提供する。
しかし、退化 PPP 法は無限次元ヒルベルト空間において弱収束を示し、加速された不変量を持たない。
これらの問題に対処するため,Halpern の反復法の強い収束と加速度特性を利用する Halpern 型 PPP (HPPP) アルゴリズムを提案する。
また,HPPP と Plug-and-Play (PnP) といったデノイザ先行処理を併用することにより,画像復元のための新しいアルゴリズムを提案する。
最後に,いくつかの玩具の例と画像復元を含む数値実験を行い,提案アルゴリズムの有効性を検証した。
関連論文リスト
- A Unified Plug-and-Play Algorithm with Projected Landweber Operator for Split Convex Feasibility Problems [6.185478918618347]
近年,Plug-and-Play法は,演算子をデノイザに置き換えることで,逆画像問題における最先端性能を実現している。
理論的に保証されたステップサイズを持つ手法の適用は困難であり、アルゴリズムはノイズに制限される。
これらの問題に対処するために、Project Landweber Operator (PLOPLO) が提案されている。
論文 参考訳(メタデータ) (2024-08-22T03:29:51Z) - Qudit inspired optimization for graph coloring [0.0]
グラフ色問題(GCP)のための量子インスパイアされたアルゴリズムを提案する。
我々は、グラフ内のノードを表現し、d次元球面座標でパラメータ化した各キューディットを積状態に使用する。
我々は、QdGD(qudit gradient descent)、ランダムな状態におけるクォーディットの開始、コスト関数の最小化のために勾配降下を利用する2つの最適化戦略をベンチマークする。
論文 参考訳(メタデータ) (2024-06-02T16:19:55Z) - Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
パラメータ・サーバ・フレームワークにおける圧縮勾配通信を用いた分散勾配降下(SGD)のための新しいアルゴリズムを提案する。
平坦な1ビット勾配勾配勾配法(FO-SGD)は2つの単純なアルゴリズムの考え方に依存している。
論文 参考訳(メタデータ) (2024-05-17T21:17:27Z) - Plug-and-Play image restoration with Stochastic deNOising REgularization [8.678250057211368]
SNORE(Denoising Regularization)と呼ばれる新しいフレームワークを提案する。
SNOREは、適切なレベルのノイズのある画像のみにデノイザを適用する。
これは明示的な正則化に基づいており、逆問題を解決するための降下につながる。
論文 参考訳(メタデータ) (2024-02-01T18:05:47Z) - Convergent plug-and-play with proximal denoiser and unconstrained
regularization parameter [12.006511319607473]
本稿では,Plug-Play(PGD)アルゴリズムの収束性について述べる。
最近の研究は、証明(DRS)による収束を探求している。
まず、新しい収束証明を提供する。
正規化にいかなる制限も課さないDSS。
第2に、画像復元の精度を高めるPGDの緩和版について検討する。
論文 参考訳(メタデータ) (2023-11-02T13:18:39Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
本稿では,スコア関数を先行生成関数とする高速化されたWirtinger Flow (AWF) を用いた新しいアルゴリズム"AWFS"を提案する。
PRの対数様関数の勾配を計算し、リプシッツ定数を決定する。
本稿では,提案アルゴリズムの臨界点収束保証を確立する理論的解析を行う。
論文 参考訳(メタデータ) (2023-05-12T18:08:47Z) - Provably Convergent Plug-and-Play Quasi-Newton Methods [5.9974035827998655]
本稿では,忠実度項とディープデノイザを併用する効率的な手法を提案する。
提案した準ニュートンアルゴリズムは,弱凸関数の臨界点であることを示す。
画像ブラアリングと超高分解能の実験は、他の証明可能なdeM法と比較して、より高速な収束を示す。
論文 参考訳(メタデータ) (2023-03-09T20:09:15Z) - A relaxed proximal gradient descent algorithm for convergent
plug-and-play with proximal denoiser [6.2484576862659065]
本稿では,新しいコンバーゼントなPlug-and-fidelity Descent (Play)アルゴリズムを提案する。
このアルゴリズムは、より広い範囲の通常の凸化パラメータに収束し、画像のより正確な復元を可能にする。
論文 参考訳(メタデータ) (2023-01-31T16:11:47Z) - A Semismooth Newton Stochastic Proximal Point Algorithm with Variance Reduction [2.048226951354646]
弱凸, 複合最適化問題に対する実装可能な近位点(SPP)法を開発した。
提案アルゴリズムは分散低減機構を組み込んでおり、その結果の更新は不正確なセミスムース・ニュートン・フレームワークを用いて解決される。
論文 参考訳(メタデータ) (2022-04-01T13:08:49Z) - An Interpretation of Regularization by Denoising and its Application
with the Back-Projected Fidelity Term [55.34375605313277]
RED勾配は以前の関数の(部分)階調と見なすことができるが、その点の分極バージョンで考えることができる。
本稿では, RED と Back-Projection (BP) のフィデリティ項を組み合わせることを提案する。
論文 参考訳(メタデータ) (2021-01-27T18:45:35Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
深層ニューラルネットワークに展開する反復アルゴリズムを用いて,学習したブロックスパース最適化手法を提案する。
本稿では、正規化パラメータの選択を学ぶことができる学習ブロック反復収縮しきい値アルゴリズムを使用することの利点を示す。
論文 参考訳(メタデータ) (2020-12-07T09:27:16Z) - Logistic Q-Learning [87.00813469969167]
MDPにおける最適制御の正規化線形プログラミング定式化から導いた新しい強化学習アルゴリズムを提案する。
提案アルゴリズムの主な特徴は,広範に使用されているベルマン誤差の代わりとして理論的に音声として機能する,政策評価のための凸損失関数である。
論文 参考訳(メタデータ) (2020-10-21T17:14:31Z) - Regularization by Denoising via Fixed-Point Projection (RED-PRO) [34.89374374708481]
画像処理では、Denoising (RED) と Plug-and-Play Prior (RED) による正規化が使用される。
どちらも様々な回復作業における最先端の結果を示しているが、理論上の正当化は不完全である。
論文 参考訳(メタデータ) (2020-08-01T09:35:22Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - A Fast Stochastic Plug-and-Play ADMM for Imaging Inverse Problems [5.025654873456756]
本稿では,画像アプリケーションのための効率的なプラグアンドプレイ(逆問題)アルゴリズムを提案する。
提案手法の有効性を最先端手法と比較し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-06-20T18:03:52Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z) - Determinantal Point Processes in Randomized Numerical Linear Algebra [80.27102478796613]
数値線形代数(RandNLA)は、科学計算、データサイエンス、機械学習などで発生する行列問題に対する改良されたアルゴリズムを開発するためにランダム性を使用する。
最近の研究により、DPPとRandNLAの間の深い実りある関係が明らかになり、新たな保証とアルゴリズムの改善につながった。
論文 参考訳(メタデータ) (2020-05-07T00:39:52Z) - Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart
for Nonconvex Optimization [73.38702974136102]
アルゴリズムの高速化のために,パラメータ再起動方式が提案されている。
本論文では,非滑らかな問題を解くアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-26T16:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。