論文の概要: LSD3K: A Benchmark for Smoke Removal from Laparoscopic Surgery Images
- arxiv url: http://arxiv.org/abs/2407.13132v1
- Date: Thu, 18 Jul 2024 03:42:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 18:53:59.359860
- Title: LSD3K: A Benchmark for Smoke Removal from Laparoscopic Surgery Images
- Title(参考訳): LSD3K : 腹腔鏡下手術画像からの煙除去のためのベンチマーク
- Authors: Wenhui Chang, Hongming Chen,
- Abstract要約: 腹腔鏡下手術で手術器具が生み出す煙は視野を曖昧にし、外科医が正確に安全に手術を行う能力を損なう。
近年、腹腔鏡画像の喫煙が研究者の注目を集めているが、このタスクの開発を妨害する主要なボトルネックは、公開可能な高品質なベンチマークデータセットの欠如である。
我々は, 3000対の合成非均一煙像からなる, LSD3Kと呼ばれる腹腔鏡下手術画像デスモーキングのための新しい高品質データセットを構築した。
- 参考スコア(独自算出の注目度): 0.7138611948315257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smoke generated by surgical instruments during laparoscopic surgery can obscure the visual field, impairing surgeons' ability to perform operations accurately and safely. Thus, smoke removal task for laparoscopic images is highly desirable. Despite laparoscopic image desmoking has attracted the attention of researchers in recent years and several algorithms have emerged, the lack of publicly available high-quality benchmark datasets is the main bottleneck to hamper the development progress of this task. To advance this field, we construct a new high-quality dataset for Laparoscopic Surgery image Desmoking, named LSD3K, consisting of 3,000 paired synthetic non-homogeneous smoke images. In this paper, we provide a dataset generation pipeline, which includes modeling smoke shape using Blender, collecting ground-truth images from the Cholec80 dataset, random sampling of smoke masks and etc. Based on the proposed benchmark, we further conducted a comprehensive evaluation of the existing representative desmoking algorithms. The proposed dataset is publicly available at https://drive.google.com/file/d/1v0U5_3S4nJpaUiP898Q0pc-MfEAtnbOq/view?usp=sharing
- Abstract(参考訳): 腹腔鏡下手術で手術器具が生み出す煙は視野を曖昧にし、外科医が正確に安全に手術を行う能力を損なう。
したがって、腹腔鏡画像の煙除去作業が極めて望ましい。
腹腔鏡画像の喫煙は近年研究者の注目を集め、いくつかのアルゴリズムが登場したが、このタスクの開発進捗を妨げる主要なボトルネックは、公開可能な高品質なベンチマークデータセットの欠如である。
この領域を推し進めるために、3000対の合成非均一な煙像からなるLSD3Kという、腹腔鏡下手術画像デスモーキングのための新しい高品質データセットを構築した。
本稿では,Blender を用いた煙形状のモデル化,Colec80 データセットからの地味画像の収集,煙マスクのランダムサンプリングなどを含む,データセット生成パイプラインを提案する。
提案したベンチマークに基づいて,既存の代表喫煙アルゴリズムの包括的評価を行った。
提案されたデータセットはhttps://drive.google.com/file/d/1v0U5_3S4nJpaUiP898Q0pc-MfEAtnbOq/view?
usp=共有
関連論文リスト
- Unsupervised Training of a Dynamic Context-Aware Deep Denoising Framework for Low-Dose Fluoroscopic Imaging [6.130738760059542]
フルオロスコープは医用画像におけるリアルタイムX線可視化に重要である。
低線量画像はノイズによって損なわれ、診断精度に影響を及ぼす可能性がある。
蛍光画像系列を動的に認識する教師なし学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T13:39:31Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Diffusion Facial Forgery Detection [56.69763252655695]
本稿では,顔に焦点をあてた拡散生成画像を対象とした包括的データセットであるDiFFを紹介する。
人体実験といくつかの代表的な偽造検出手法を用いて,DiFFデータセットの広範な実験を行った。
その結果、人間の観察者と自動検出者の2値検出精度は30%以下であることが判明した。
論文 参考訳(メタデータ) (2024-01-29T03:20:19Z) - Progressive Frequency-Aware Network for Laparoscopic Image Desmoking [8.988060012957497]
本稿では,CNNとTransformerの強みを組み合わせた腹腔鏡下画像喫煙のための軽量なGANフレームワークを提案する。
PFANは、限られたトレーニングデータであっても、腹腔鏡像を効率的に除去する。
提案手法は,PSNR,SSIM,CIEDE2000,およびCholec80データセットの視覚的品質において,最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2023-12-19T10:19:44Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
ボリューム・スイープ・イメージング(VSI)は、訓練を受けていないオペレーターが高品質な超音波画像をキャプチャできる革新的な手法である。
本稿ではWavelet_Attention_UNet(WATUNet)と呼ばれる新しいセグメンテーションモデルを提案する。
このモデルでは、簡単な接続ではなく、ウェーブレットゲート(WG)とアテンションゲート(AG)をエンコーダとデコーダの間に組み込んで、上記の制限を克服する。
論文 参考訳(メタデータ) (2023-11-17T20:32:37Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
肺がんは、長年にわたり、世界中でがん関連の死因の1つとなっている。
ディープラーニング、学習アルゴリズムに基づくコンピュータ支援診断(CAD)モデルは、スクリーニングプロセスを加速することができる。
しかし、堅牢で正確なモデルを開発するには、しばしば高品質なアノテーションを備えた大規模で多様な医療データセットが必要である。
論文 参考訳(メタデータ) (2023-05-02T01:04:22Z) - Generation of Anonymous Chest Radiographs Using Latent Diffusion Models
for Training Thoracic Abnormality Classification Systems [7.909848251752742]
胸部X線写真における生体認証は、研究目的のためにそのようなデータの公開を妨げている。
この研究は、高品質なクラス条件画像の匿名胸部X線データセットを合成するために潜時拡散モデルを用いている。
論文 参考訳(メタデータ) (2022-11-02T17:43:02Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。