Adaptive Foundation Models for Online Decisions: HyperAgent with Fast Incremental Uncertainty Estimation
- URL: http://arxiv.org/abs/2407.13195v2
- Date: Sun, 21 Jul 2024 16:31:14 GMT
- Title: Adaptive Foundation Models for Online Decisions: HyperAgent with Fast Incremental Uncertainty Estimation
- Authors: Yingru Li, Jiawei Xu, Zhi-Quan Luo,
- Abstract summary: GPT-HyperAgent is an augmentation of GPT with HyperAgent for uncertainty-aware, scalable exploration in contextual bandits.
We prove that HyperAgent achieves fast incremental uncertainty estimation with $tildeO(log T)$ per-step computational complexity.
Our analysis demonstrates that HyperAgent's regret order matches that of exact Thompson sampling in linear contextual bandits.
- Score: 20.45450465931698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models often struggle with uncertainty when faced with new situations in online decision-making, necessitating scalable and efficient exploration to resolve this uncertainty. We introduce GPT-HyperAgent, an augmentation of GPT with HyperAgent for uncertainty-aware, scalable exploration in contextual bandits, a fundamental online decision problem involving natural language input. We prove that HyperAgent achieves fast incremental uncertainty estimation with $\tilde{O}(\log T)$ per-step computational complexity over $T$ periods under the linear realizable assumption. Our analysis demonstrates that HyperAgent's regret order matches that of exact Thompson sampling in linear contextual bandits, closing a significant theoretical gap in scalable exploration. Empirical results in real-world contextual bandit tasks, such as automated content moderation with human feedback, validate the practical effectiveness of GPT-HyperAgent for safety-critical decisions. Our code is open-sourced at \url{https://github.com/szrlee/GPT-HyperAgent/}.
Related papers
- Uncertainty of Joint Neural Contextual Bandit [0.41436032949434404]
This paper focuses on a joint neural contextual bandit solution which serves all recommending items in one model.
The tuning of the parameter $alpha$ is typically complex in practice due to its nature.
We provide both theoretical analysis and experimental findings regarding the uncertainty $sigma$ of the joint neural contextual bandit model.
arXiv Detail & Related papers (2024-06-04T17:38:24Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent [23.669599662214686]
HyperAgent is a reinforcement learning (RL) algorithm based on the hypermodel framework for exploration in RL.
We demonstrate that HyperAgent offers robust performance in large-scale deep RL benchmarks.
It can solve Deep Sea hard exploration problems with episodes that optimally scale with problem size and exhibits significant efficiency gains in the Atari suite.
arXiv Detail & Related papers (2024-02-05T07:07:30Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
We introduce a stepwise self-evaluation mechanism to guide and calibrate the reasoning process of Large Language Model (LLM)
We propose a decoding algorithm integrating the self-evaluation guidance via beam search.
Our approach surpasses the corresponding Codex-backboned baselines in few-shot accuracy by $6.34%$, $9.56%$, and $5.46%$ on the GSM8K, AQuA, and StrategyQA.
arXiv Detail & Related papers (2023-05-01T02:37:59Z) - Online Continuous Hyperparameter Optimization for Generalized Linear Contextual Bandits [55.03293214439741]
In contextual bandits, an agent sequentially makes actions from a time-dependent action set based on past experience.
We propose the first online continuous hyperparameter tuning framework for contextual bandits.
We show that it could achieve a sublinear regret in theory and performs consistently better than all existing methods on both synthetic and real datasets.
arXiv Detail & Related papers (2023-02-18T23:31:20Z) - Two-sided Competing Matching Recommendation Markets With Quota and Complementary Preferences Constraints [13.069703665055084]
We propose a new recommendation algorithm for addressing the problem of two-sided online matching markets with complementary preferences and quota constraints.
The presence of mixed quota and complementary preferences constraints can lead to instability in the matching process.
We formulate the problem as a bandit learning framework and propose the Multi-agent Multi-type Thompson Sampling algorithm.
arXiv Detail & Related papers (2023-01-24T18:54:29Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
We consider a distributed reinforcement learning setting where multiple agents explore the environment and communicate their experiences through a central server.
$alpha$-fraction of agents are adversarial and can report arbitrary fake information.
We seek to identify a near-optimal policy for the underlying Markov decision process in the presence of these adversarial agents.
arXiv Detail & Related papers (2022-06-01T00:44:53Z) - Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems:
An Evidence Theoretic and Meta-Heuristic Approach [0.0]
False alerts due to/ compromised IDS in ICS networks can lead to severe economic and operational damage.
This work presents an approach for reducing false alerts in CPS power systems by dealing with uncertainty without prior distribution of alerts.
arXiv Detail & Related papers (2021-11-20T00:05:39Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - Cost-Efficient Online Hyperparameter Optimization [94.60924644778558]
We propose an online HPO algorithm that reaches human expert-level performance within a single run of the experiment.
Our proposed online HPO algorithm reaches human expert-level performance within a single run of the experiment, while incurring only modest computational overhead compared to regular training.
arXiv Detail & Related papers (2021-01-17T04:55:30Z) - Decentralized Multi-Agent Linear Bandits with Safety Constraints [31.67685495996986]
We study decentralized linear bandits, where a network of $N$ agents acts cooperatively to solve a linear bandit-optimization problem.
We propose DLUCB: a fully decentralized algorithm that minimizes the cumulative regret over the entire network.
We show that our ideas extend naturally to the emerging, albeit more challenging, setting of safe bandits.
arXiv Detail & Related papers (2020-12-01T07:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.