Adaptive Foundation Models for Online Decisions: HyperAgent with Fast Incremental Uncertainty Estimation
- URL: http://arxiv.org/abs/2407.13195v2
- Date: Sun, 21 Jul 2024 16:31:14 GMT
- Title: Adaptive Foundation Models for Online Decisions: HyperAgent with Fast Incremental Uncertainty Estimation
- Authors: Yingru Li, Jiawei Xu, Zhi-Quan Luo,
- Abstract summary: GPT-HyperAgent is an augmentation of GPT with HyperAgent for uncertainty-aware, scalable exploration in contextual bandits.
We prove that HyperAgent achieves fast incremental uncertainty estimation with $tildeO(log T)$ per-step computational complexity.
Our analysis demonstrates that HyperAgent's regret order matches that of exact Thompson sampling in linear contextual bandits.
- Score: 20.45450465931698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models often struggle with uncertainty when faced with new situations in online decision-making, necessitating scalable and efficient exploration to resolve this uncertainty. We introduce GPT-HyperAgent, an augmentation of GPT with HyperAgent for uncertainty-aware, scalable exploration in contextual bandits, a fundamental online decision problem involving natural language input. We prove that HyperAgent achieves fast incremental uncertainty estimation with $\tilde{O}(\log T)$ per-step computational complexity over $T$ periods under the linear realizable assumption. Our analysis demonstrates that HyperAgent's regret order matches that of exact Thompson sampling in linear contextual bandits, closing a significant theoretical gap in scalable exploration. Empirical results in real-world contextual bandit tasks, such as automated content moderation with human feedback, validate the practical effectiveness of GPT-HyperAgent for safety-critical decisions. Our code is open-sourced at \url{https://github.com/szrlee/GPT-HyperAgent/}.
Related papers
- Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
We present a novel approach to address the multi-agent sparse contextual linear bandit problem.
It is first algorithm that tackles row-wise distributed data in sparse linear bandits.
It is widely applicable to high-dimensional multi-agent problems where efficient feature extraction is critical for minimizing regret.
arXiv Detail & Related papers (2023-05-30T16:05:44Z) - Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with
General Utilities [12.104551746465932]
We investigate safe multi-agent reinforcement learning, where agents seek to collectively maximize an aggregate sum of local objectives while satisfying their own safety constraints.
Our algorithm converges to a first-order stationary point (FOSP) at the rate of $mathcalOleft(T-2/3right)$.
In the sample-based setting, we demonstrate that, with high probability, our algorithm requires $widetildemathcalOleft(epsilon-3.5right)$ samples to achieve an $epsilon$-FOSP.
arXiv Detail & Related papers (2023-05-27T20:08:35Z) - Flag Aggregator: Scalable Distributed Training under Failures and
Augmented Losses using Convex Optimization [14.732408788010313]
ML applications increasingly rely on complex deep learning models and large datasets.
To scale computation and data, these models are inevitably trained in a distributed manner in clusters of nodes, and their updates are aggregated before being applied to the model.
With data augmentation added to these settings, there is a critical need for robust and efficient aggregation systems.
We show that our approach significantly enhances the robustness of state-of-the-art Byzantine resilient aggregators.
arXiv Detail & Related papers (2023-02-12T06:38:30Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) is proposed to directly sample from the posterior distribution in contextual bandits.
We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits.
arXiv Detail & Related papers (2022-06-22T17:58:23Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
Low-complexity models such as linear function representation play a pivotal role in enabling sample-efficient reinforcement learning.
In this paper, we investigate a new sampling protocol, which draws samples in an online/exploratory fashion but allows one to backtrack and revisit previous states in a controlled and infrequent manner.
We develop an algorithm tailored to this setting, achieving a sample complexity that scales practicallyly with the feature dimension, the horizon, and the inverse sub-optimality gap, but not the size of the state/action space.
arXiv Detail & Related papers (2021-05-17T17:22:07Z) - An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic
Gradient Descent and Thompson Sampling [83.48992319018147]
We consider the contextual bandit problem, where a player sequentially makes decisions based on past observations to maximize the cumulative reward.
A natural way to resolve this problem is to apply online gradient descent (SGD) so that the per-step time and memory complexity can be reduced to constant.
In this work, we show that online SGD can be applied to the generalized linear bandit problem.
The proposed SGD-TS algorithm, which uses a single-step SGD update to exploit past information, achieves $tildeO(sqrtT)$ regret with the total time complexity that
arXiv Detail & Related papers (2020-06-07T01:12:39Z) - Regret and Belief Complexity Trade-off in Gaussian Process Bandits via
Information Thresholding [42.669970064867556]
We show how to characterize the trade-off between regret bounds of GP bandit algorithms and complexity of the posterior distributions.
We observe state of the art accuracy and complexity trade-offs for GP bandit algorithms applied to global optimization.
arXiv Detail & Related papers (2020-03-23T21:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.