Analyzing and Bridging the Gap between Maximizing Total Reward and Discounted Reward in Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2407.13279v1
- Date: Thu, 18 Jul 2024 08:33:10 GMT
- Title: Analyzing and Bridging the Gap between Maximizing Total Reward and Discounted Reward in Deep Reinforcement Learning
- Authors: Shuyu Yin, Fei Wen, Peilin Liu, Tao Luo,
- Abstract summary: In deep reinforcement learning applications, maximizing discounted reward is often employed instead of maximizing total reward.
We analyzed the suboptimality of the policy obtained through maximizing discounted reward in relation to the policy that maximizes total reward.
We developed methods to align the optimal policies of the two objectives in certain situations, which can improve the performance of reinforcement learning algorithms.
- Score: 17.245293915129942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In deep reinforcement learning applications, maximizing discounted reward is often employed instead of maximizing total reward to ensure the convergence and stability of algorithms, even though the performance metric for evaluating the policy remains the total reward. However, the optimal policies corresponding to these two objectives may not always be consistent. To address this issue, we analyzed the suboptimality of the policy obtained through maximizing discounted reward in relation to the policy that maximizes total reward and identified the influence of hyperparameters. Additionally, we proposed sufficient conditions for aligning the optimal policies of these two objectives under various settings. The primary contributions are as follows: We theoretically analyzed the factors influencing performance when using discounted reward as a proxy for total reward, thereby enhancing the theoretical understanding of this scenario. Furthermore, we developed methods to align the optimal policies of the two objectives in certain situations, which can improve the performance of reinforcement learning algorithms.
Related papers
- Adversarial Constrained Policy Optimization: Improving Constrained Reinforcement Learning by Adapting Budgets [6.5472155063246085]
Constrained reinforcement learning has achieved promising progress in safety-critical fields where both rewards and constraints are considered.
We propose Adrial Constrained Policy Optimization (ACPO), which enables simultaneous optimization of reward and the adaptation of cost budgets during training.
arXiv Detail & Related papers (2024-10-28T07:04:32Z) - Importance-Weighted Offline Learning Done Right [16.4989952150404]
We study the problem of offline policy optimization in contextual bandit problems.
The goal is to learn a near-optimal policy based on a dataset of decision data collected by a suboptimal behavior policy.
We show that a simple alternative approach based on the "implicit exploration" estimator of citet2015 yields performance guarantees that are superior in nearly all possible terms to all previous results.
arXiv Detail & Related papers (2023-09-27T16:42:10Z) - Provable Offline Preference-Based Reinforcement Learning [95.00042541409901]
We investigate the problem of offline Preference-based Reinforcement Learning (PbRL) with human feedback.
We consider the general reward setting where the reward can be defined over the whole trajectory.
We introduce a new single-policy concentrability coefficient, which can be upper bounded by the per-trajectory concentrability.
arXiv Detail & Related papers (2023-05-24T07:11:26Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - State Augmented Constrained Reinforcement Learning: Overcoming the
Limitations of Learning with Rewards [88.30521204048551]
A common formulation of constrained reinforcement learning involves multiple rewards that must individually accumulate to given thresholds.
We show a simple example in which the desired optimal policy cannot be induced by any weighted linear combination of rewards.
This work addresses this shortcoming by augmenting the state with Lagrange multipliers and reinterpreting primal-dual methods.
arXiv Detail & Related papers (2021-02-23T21:07:35Z) - Regularized Policies are Reward Robust [33.05828095421357]
We study the effects of regularization of policies in Reinforcement Learning (RL)
We find that the optimal policy found by a regularized objective is precisely an optimal policy of a reinforcement learning problem under a worst-case adversarial reward.
Our results thus give insights into the effects of regularization of policies and deepen our understanding of exploration through robust rewards at large.
arXiv Detail & Related papers (2021-01-18T11:38:47Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Batch Policy Learning in Average Reward Markov Decision Processes [3.9023554886892438]
Motivated by mobile health applications, we focus on learning a policy that maximizes the long-term average reward.
We develop an optimization algorithm to compute the optimal policy in a parameterized policy class.
The performance of the estimated policy is measured by the difference between the optimal average reward in the policy class and the average reward of the estimated policy.
arXiv Detail & Related papers (2020-07-23T03:28:14Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.