論文の概要: Hybrid Deep Learning-Based for Enhanced Occlusion Segmentation in PICU Patient Monitoring
- arxiv url: http://arxiv.org/abs/2407.13341v1
- Date: Thu, 18 Jul 2024 09:37:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 15:50:32.171811
- Title: Hybrid Deep Learning-Based for Enhanced Occlusion Segmentation in PICU Patient Monitoring
- Title(参考訳): PICU患者モニタリングにおける咬合分割強化のためのハイブリッド深層学習
- Authors: Mario Francisco Munoz, Hoang Vu Huy, Thanh-Dung Le,
- Abstract要約: 本稿では,PICU内の遠隔監視アプリケーションで発生する共通閉塞を分割するハイブリッド手法を提案する。
私たちのアプローチは、限られたトレーニングデータシナリオのためのディープラーニングパイプラインの作成に重点を置いています。
提案したフレームワークは、92.5%の精度、93.8%のリコール、90.3%の精度、92.0%のF1スコアで全体的な分類性能が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Remote patient monitoring has emerged as a prominent non-invasive method, using digital technologies and computer vision (CV) to replace traditional invasive monitoring. While neonatal and pediatric departments embrace this approach, Pediatric Intensive Care Units (PICUs) face the challenge of occlusions hindering accurate image analysis and interpretation. \textit{Objective}: In this study, we propose a hybrid approach to effectively segment common occlusions encountered in remote monitoring applications within PICUs. Our approach centers on creating a deep-learning pipeline for limited training data scenarios. \textit{Methods}: First, a combination of the well-established Google DeepLabV3+ segmentation model with the transformer-based Segment Anything Model (SAM) is devised for occlusion segmentation mask proposal and refinement. We then train and validate this pipeline using a small dataset acquired from real-world PICU settings with a Microsoft Kinect camera, achieving an Intersection-over-Union (IoU) metric of 85\%. \textit{Results}: Both quantitative and qualitative analyses underscore the effectiveness of our proposed method. The proposed framework yields an overall classification performance with 92.5\% accuracy, 93.8\% recall, 90.3\% precision, and 92.0\% F1-score. Consequently, the proposed method consistently improves the predictions across all metrics, with an average of 2.75\% gain in performance compared to the baseline CNN-based framework. \textit{Conclusions}: Our proposed hybrid approach significantly enhances the segmentation of occlusions in remote patient monitoring within PICU settings. This advancement contributes to improving the quality of care for pediatric patients, addressing a critical need in clinical practice by ensuring more accurate and reliable remote monitoring.
- Abstract(参考訳): 遠隔患者モニタリングは、デジタル技術とコンピュータビジョン(CV)を用いて、従来の侵襲的モニタリングに取って代わる、顕著な非侵襲的手法として登場した。
新生児部と小児部がこのアプローチを取り入れている一方で、小児集中治療室(PICU)は、正確な画像分析と解釈を妨げる閉塞の課題に直面している。
そこで本研究では,遠隔監視アプリケーションで発生する共通閉塞をPICU内で効果的に分離するハイブリッド手法を提案する。
私たちのアプローチは、限られたトレーニングデータシナリオのためのディープラーニングパイプラインの作成に重点を置いています。
まず、確立されたGoogle DeepLabV3+セグメンテーションモデルとトランスフォーマーベースのSegment Anything Model(SAM)を組み合わせて、オクルージョンセグメンテーションマスクの提案と改善のために考案された。
次に、Microsoft Kinectカメラで現実世界のPICU設定から取得した小さなデータセットを使用してパイプラインをトレーニングし、検証し、インターセクション・オーバー・ユニオン(IoU)メトリックの85\%を達成する。
\textit{Results}: 定量的および定性的分析は, 提案手法の有効性を裏付けるものである。
提案手法は,92.5\%の精度,93.8\%のリコール,90.3\%の精度,92.0\%のF1スコアで総合的な分類性能が得られる。
その結果、提案手法は、ベースラインCNNベースのフレームワークと比較して平均2.75倍の性能向上率で、全ての指標の予測を一貫して改善する。
\textit{Conclusions}:本提案のハイブリッドアプローチは,PICU設定内における遠隔患者モニタリングにおける咬合のセグメンテーションを著しく向上させる。
この進歩は、より正確で信頼性の高い遠隔監視を確実にすることで、臨床実践における重要なニーズに対処し、小児患者のケアの質の向上に寄与する。
関連論文リスト
- Goal-conditioned reinforcement learning for ultrasound navigation guidance [4.648318344224063]
目標条件強化学習(G)としてのコントラスト学習に基づく新しい超音波ナビゲーション支援手法を提案する。
我々は,新しいコントラスト的患者法 (CPB) とデータ拡張型コントラスト的損失を用いて,従来の枠組みを拡張した。
提案法は, 789人の大容量データセットを用いて開発され, 平均誤差は6.56mm, 9.36°であった。
論文 参考訳(メタデータ) (2024-05-02T16:01:58Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
この論文は網膜血管セグメンテーションの課題に焦点を当てている。
深層学習に基づく医用画像セグメンテーションアプローチの広範な文献レビューを提供する。
効率的でシンプルな多視点学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T06:31:08Z) - SSL-CPCD: Self-supervised learning with composite pretext-class
discrimination for improved generalisability in endoscopic image analysis [3.1542695050861544]
深層学習に基づく教師付き手法は医用画像解析において広く普及している。
大量のトレーニングデータと、目に見えないデータセットに対する一般的な問題に直面する必要がある。
本稿では,加法的角マージンを用いたパッチレベルのインスタンスグループ識別とクラス間変動のペナル化について検討する。
論文 参考訳(メタデータ) (2023-05-31T21:28:08Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Segmentation of Bruch's Membrane in retinal OCT with AMD using
anatomical priors and uncertainty quantification [4.5206601127476445]
本稿では,AMD患者に対するBruch膜(BM)自動分割のためのエンドツーエンド深層学習法を提案する。
アテンションU-Netは、表面の自然な曲率を考慮してBM位置の確率密度関数を出力するように訓練される。
また, サーフェス位置の他に, セグメンテーション出力のAスキャン的不確かさを推定する手法も提案した。
論文 参考訳(メタデータ) (2022-10-26T15:49:07Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。