論文の概要: Towards Clinical Practice in CT-Based Pulmonary Disease Screening: An Efficient and Reliable Framework
- arxiv url: http://arxiv.org/abs/2412.01525v3
- Date: Thu, 12 Jun 2025 06:50:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.094516
- Title: Towards Clinical Practice in CT-Based Pulmonary Disease Screening: An Efficient and Reliable Framework
- Title(参考訳): CTによる肺疾患スクリーニングの臨床 : 有効かつ信頼性の高い枠組み
- Authors: Qian Shao, Bang Du, Kai Zhang, Yixuan Wu, Zepeng Li, Qiyuan Chen, Qianqian Tang, Jian Wu, Jintai Chen, Honghao Gao, Hongxia Xu,
- Abstract要約: クラスタベースサブサンプリング(CSS)法は,CTスライスをコンパクトかつ包括的に選択する。
ハイブリッド不確実性定量化(HUQ)メカニズムは、Aleatoric Uncertainty(AU)とEpistemic Uncertainty(EU)の両方を最小の計算オーバーヘッドで評価する。
- 参考スコア(独自算出の注目度): 16.98886836566185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models for pulmonary disease screening from Computed Tomography (CT) scans promise to alleviate the immense workload on radiologists. Still, their high computational cost, stemming from processing entire 3D volumes, remains a major barrier to widespread clinical adoption. Current sub-sampling techniques often compromise diagnostic integrity by introducing artifacts or discarding critical information. To overcome these limitations, we propose an Efficient and Reliable Framework (ERF) that fundamentally improves the practicality of automated CT analysis. Our framework introduces two core innovations: (1) A Cluster-based Sub-Sampling (CSS) method that efficiently selects a compact yet comprehensive subset of CT slices by optimizing for both representativeness and diversity. By integrating an efficient k-Nearest Neighbor (k-NN) search with an iterative refinement process, CSS bypasses the computational bottlenecks of previous methods while preserving vital diagnostic features. (2) A lightweight Hybrid Uncertainty Quantification (HUQ) mechanism, which uniquely assesses both Aleatoric Uncertainty (AU) and Epistemic Uncertainty (EU) with minimal computational overhead. By maximizing the discrepancy between auxiliary classifiers, HUQ provides a robust reliability score, which is crucial for building trust in automated systems operating on partial data. Validated on two public datasets with 2,654 CT volumes across diagnostic tasks for 3 pulmonary diseases, our proposed ERF achieves diagnostic performance comparable to the full-volume analysis (over 90% accuracy and recall) while reducing processing time by more than 60%. This work represents a significant step towards deploying fast, accurate, and trustworthy AI-powered screening tools in time-sensitive clinical settings.
- Abstract(参考訳): Computed Tomography(CT)スキャンによる肺疾患スクリーニングのための深層学習モデルは、放射線科医の膨大な作業負荷を軽減することを約束する。
それでも、3Dボリューム全体を処理することによる高い計算コストは、広く臨床に採用される上で大きな障壁となっている。
現在のサブサンプリング技術は、アーティファクトの導入や重要な情報を破棄することで、診断の整合性を損なうことが多い。
これらの制約を克服するため,自動CT解析の実用性を大幅に改善するERF(Efficient and Reliable Framework)を提案する。
1) クラスタベースのサブサンプリング (CSS) 手法により,CTスライスのコンパクトかつ包括的サブセットを効率よく選択し,代表性と多様性の両方を最適化する。
効率的なk-Nearest Neighbor(k-NN)探索を反復的精錬プロセスに統合することにより、CSSは重要な診断機能を保持しながら、従来の手法の計算ボトルネックを回避できる。
2) Aleatoric Uncertainty (AU) と Epistemic Uncertainty (EU) の両方を計算オーバーヘッドを最小限にした軽量なハイブリッド不確実性定量(HUQ)機構。
補助分類器間の差を最大化することにより、HUQは堅牢な信頼性スコアを提供する。
肺疾患3例の診断タスクに2,654CTボリュームの2つの公開データセットで検証し,全量解析(90%以上精度とリコール)に匹敵する診断性能を達成し,処理時間を60%以上短縮した。
この研究は、時間に敏感な臨床環境で、迅速で正確で信頼性の高いAIによるスクリーニングツールをデプロイするための重要なステップである。
関連論文リスト
- SVD Based Least Squares for X-Ray Pneumonia Classification Using Deep Features [0.0]
肺炎分類のための特異値分解に基づくLast Squaresフレームワークを提案する。
我々は、精度を損なうことなく効率を確保できる、クローズドな非イテレーティブな分類手法を採用する。
実験により,SVD-LSは計算コストを大幅に削減し,競争性能が向上することを示した。
論文 参考訳(メタデータ) (2025-04-29T17:39:16Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
本稿では,2次元ガウススプラッティングとTransformer UNetアーキテクチャを組み合わせた皮膚癌自動診断手法を提案する。
セグメンテーションと分類の精度は著しく向上した。
この統合は、新しいベンチマークをこの分野に設定し、マルチタスク医療画像解析手法のさらなる研究の可能性を強調している。
論文 参考訳(メタデータ) (2025-02-23T23:28:47Z) - A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma [10.226976909997711]
HCCは世界で3番目に多いがん関連死亡原因である。
AI技術の最近の進歩は、このギャップを埋めるための有望なソリューションを提供する。
HSQformerは、CNNのローカル特徴抽出とVision Transformerのグローバルコンテキスト認識を相乗化する、新しいハイブリッドアーキテクチャである。
論文 参考訳(メタデータ) (2025-02-06T04:17:02Z) - MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement [1.6355783973385114]
多視点認識知識強化型TansfoRmer(MvKeTR)
複数の解剖学的ビューから診断情報を効果的に合成するために、ビューアウェアのMVPAを提案する。
クエリボリュームに基づいて、最も類似したレポートを取得するために、Cross-Modal Knowledge Enhancer (CMKE) が考案されている。
論文 参考訳(メタデータ) (2024-11-27T12:58:23Z) - MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [17.838015589388014]
肺結節は肺癌の早期診断における重要な指標である。
従来のCT画像撮影法は、煩雑な処置、低検出率、ローカライゼーション精度の低下に悩まされていた。
肺小結節検出のためのマルチスケールアテンションおよび受容野ネットワークであるMSDetを提案する。
論文 参考訳(メタデータ) (2024-09-21T06:08:23Z) - Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN [2.7699831151653305]
本研究は, 心臓疾患の自動診断のための, 迅速かつ正確かつ費用対効果の高い手法を提供する新しいディープラーニングアーキテクチャを開発し, 評価する。
まず,多様な畳み込みフィルタサイズを利用して人間の聴覚処理をエミュレートするマルチブランチディープ畳み込みニューラルネットワーク(MBDCN)と,特徴抽出のためのパワースペクトル入力の2つの革新的な手法を提案する。
第二に、LSTMブロックをMBDCNに統合し、時間領域の特徴抽出を改善するLong Short-Term Memory-Convolutional Neural (LSCN)モデルである。
論文 参考訳(メタデータ) (2024-07-15T13:02:54Z) - Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
骨格領域は乳腺と前立腺に転移性癌が拡がる一般的な部位の1つである。
代用セグメンテーションタスクによりCTボリュームの骨病変を検出するパイプラインを開発した。
不完全および部分的トレーニングデータを用いたにもかかわらず,CTでは96.7%,47.3%の精度で骨病変が検出された。
論文 参考訳(メタデータ) (2024-01-31T21:05:34Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
肺がんは最も致命的な疾患の1つであり、疾患や死亡の原因となっている。
提案手法は既存の手法で解析した18.32%,27.20%,34.32%の精度で得られた。
論文 参考訳(メタデータ) (2023-12-05T10:53:35Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
前立腺MRIの非対位画像翻訳のための新しいアプローチと臨床的に重要なPCaを分類するための不確実性認識トレーニングアプローチを提案する。
提案手法では,無ペアの3.0T多パラメータ前立腺MRIを1.5Tに翻訳し,利用可能なトレーニングデータを増強する。
実験の結果,提案手法は,従来の研究に比べてAUC(Area Under ROC Curve)を20%以上改善することがわかった。
論文 参考訳(メタデータ) (2023-07-02T05:26:54Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
胸部X線(CXR)に対する胸部骨陰影の抑制は肺疾患の診断を改善することが示唆された。
従来のアプローチは、教師なしの物理的および教師なしのディープラーニングモデルに分類される。
本研究では,(1)空間変換勾配場における物理モデルによる最小化によりGT骨影を除去した2段階のトレーニングペアの生成について,一般化可能かつ効率的なワークフローを提案する。
2) 受信したCXRの高速リブ除去のために,ステージ1データセット上でのネットワークトレーニングをフル教師する。
論文 参考訳(メタデータ) (2023-02-19T23:47:02Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
CTによる肺結節の早期発見は,肺癌患者の長期生存と生活の質の向上に不可欠である。
CAD (Computer-Aided Detection/diagnosis) はこの文脈において第2または同時読影器として有用である。
肺結節の正確な検出は、サイズ、位置、および肺結節の出現のばらつきにより、CADシステムや放射線技師にとって依然として困難である。
近年のコンピュータビジョン技術に触発されて,肺結節を同定するための自己教師付き領域ベース3次元トランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-04-30T01:19:00Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated Learning(FL)は、明示的なデータ共有を避けながら協調的なモデルトレーニングを可能にする分散機械学習技術である。
本稿では,Auto-FedRLと呼ばれる,効率的な強化学習(RL)に基づくフェデレーションハイパーパラメータ最適化アルゴリズムを提案する。
提案手法の有効性は,CIFAR-10データセットと2つの実世界の医用画像セグメンテーションデータセットの不均一なデータ分割に対して検証される。
論文 参考訳(メタデータ) (2022-03-12T04:11:42Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
本稿では,その出力の確実性を推定するために,最先端自動品質制御(QC)手法の解析を行う。
磁気共鳴画像データにおける白色物質の超強度(WMH)を識別する脳画像分割タスクにおける最も有望なアプローチを検証した。
論文 参考訳(メタデータ) (2021-12-06T16:30:43Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
胸部CTスキャンの小さなデータセットを用いて,大規模な3次元合成CTスキャンボリュームを生成するCT-SGANモデルを提案する。
その結果,CT-SGANは大量の合成データに基づいて結節を事前訓練することにより,肺検出精度を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-10-14T22:20:40Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。