Restore Anything Model via Efficient Degradation Adaptation
- URL: http://arxiv.org/abs/2407.13372v2
- Date: Wed, 18 Dec 2024 16:51:18 GMT
- Title: Restore Anything Model via Efficient Degradation Adaptation
- Authors: Bin Ren, Eduard Zamfir, Zongwei Wu, Yawei Li, Yidi Li, Danda Pani Paudel, Radu Timofte, Ming-Hsuan Yang, Nicu Sebe,
- Abstract summary: RAM takes a unified path that leverages inherent similarities across various degradations to enable efficient and comprehensive restoration.
RAM's SOTA performance confirms RAM's SOTA performance, reducing model complexity by approximately 82% in trainable parameters and 85% in FLOPs.
- Score: 129.38475243424563
- License:
- Abstract: With the proliferation of mobile devices, the need for an efficient model to restore any degraded image has become increasingly significant and impactful. Traditional approaches typically involve training dedicated models for each specific degradation, resulting in inefficiency and redundancy. More recent solutions either introduce additional modules to learn visual prompts significantly increasing model size or incorporate cross-modal transfer from large language models trained on vast datasets, adding complexity to the system architecture. In contrast, our approach, termed RAM, takes a unified path that leverages inherent similarities across various degradations to enable both efficient and comprehensive restoration through a joint embedding mechanism without scaling up the model or relying on large multimodal models. Specifically, we examine the sub-latent space of each input, identifying key components and reweighting them in a gated manner. This intrinsic degradation awareness is further combined with contextualized attention in an X-shaped framework, enhancing local-global interactions. Extensive benchmarking in an all-in-one restoration setting confirms RAM's SOTA performance, reducing model complexity by approximately 82% in trainable parameters and 85% in FLOPs. Our code and models will be publicly available.
Related papers
- Multi-dimensional Visual Prompt Enhanced Image Restoration via Mamba-Transformer Aggregation [4.227991281224256]
This paper proposes to fully utilize complementary advantages from Mamba and Transformer without sacrificing computation efficiency.
The selective scanning mechanism of Mamba is employed to focus on spatial modeling, enabling capture long-range spatial dependencies.
The self-attention mechanism of Transformer is applied to focus on channel modeling, avoiding high burdens that are in quadratic growth with image's spatial dimensions.
arXiv Detail & Related papers (2024-12-20T12:36:34Z) - FoundIR: Unleashing Million-scale Training Data to Advance Foundation Models for Image Restoration [66.61201445650323]
Existing methods suffer from a generalization bottleneck in real-world scenarios.
We contribute a million-scale dataset with two notable advantages over existing training data.
We propose a robust model, FoundIR, to better address a broader range of restoration tasks in real-world scenarios.
arXiv Detail & Related papers (2024-12-02T12:08:40Z) - Decentralized Transformers with Centralized Aggregation are Sample-Efficient Multi-Agent World Models [106.94827590977337]
We propose a novel world model for Multi-Agent RL (MARL) that learns decentralized local dynamics for scalability.
We also introduce a Perceiver Transformer as an effective solution to enable centralized representation aggregation.
Results on Starcraft Multi-Agent Challenge (SMAC) show that it outperforms strong model-free approaches and existing model-based methods in both sample efficiency and overall performance.
arXiv Detail & Related papers (2024-06-22T12:40:03Z) - Improving Generalization of Neural Vehicle Routing Problem Solvers Through the Lens of Model Architecture [9.244633039170186]
We propose a plug-and-play Entropy-based Scaling Factor (ESF) and a Distribution-Specific (DS) decoder.
ESF adjusts the attention weight pattern of the model towards familiar ones discovered during training when solving VRPs of varying sizes.
DS decoder explicitly models VRPs of multiple training distribution patterns through multiple auxiliary light decoders, expanding the model representation space.
arXiv Detail & Related papers (2024-06-10T09:03:17Z) - Dealing with All-stage Missing Modality: Towards A Universal Model with Robust Reconstruction and Personalization [14.606035444283984]
Current approaches focus on developing models that handle modality-incomplete inputs during inference.
We propose a robust universal model with modality reconstruction and model personalization.
Our method has been extensively validated on two brain tumor segmentation benchmarks.
arXiv Detail & Related papers (2024-06-04T06:07:24Z) - Dynamic Pre-training: Towards Efficient and Scalable All-in-One Image Restoration [100.54419875604721]
All-in-one image restoration tackles different types of degradations with a unified model instead of having task-specific, non-generic models for each degradation.
We propose DyNet, a dynamic family of networks designed in an encoder-decoder style for all-in-one image restoration tasks.
Our DyNet can seamlessly switch between its bulkier and lightweight variants, thereby offering flexibility for efficient model deployment.
arXiv Detail & Related papers (2024-04-02T17:58:49Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - Memory-adaptive Depth-wise Heterogenous Federated Learning [24.13198329419849]
We introduce a memory-adaptive depth-wise learning solution in FL called FeDepth, which adaptively decomposes the full model into blocks according to the memory budgets of each client.
Our method outperforms state-of-the-art approaches, achieving 5% and more than 10% improvements in top-1 accuracy on CIFAR-10 and CIFAR-100, respectively.
arXiv Detail & Related papers (2023-03-08T20:52:57Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.