Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization
- URL: http://arxiv.org/abs/2407.13399v2
- Date: Fri, 19 Jul 2024 19:29:49 GMT
- Title: Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization
- Authors: Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D. Lee, Wen Sun, Akshay Krishnamurthy, Dylan J. Foster,
- Abstract summary: We present a new offline alignment algorithm, $chi2$-Preference Optimization ($chi$PO)
$chi$PO implements the principle of pessimism in the face of uncertainty via regularization.
It is provably robust to overoptimization and achieves sample-complexity guarantees based on single-policy concentrability.
- Score: 78.82586283794886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language model alignment methods, such as reinforcement learning from human feedback (RLHF), have led to impressive advances in language model capabilities, but existing techniques are limited by a widely observed phenomenon known as overoptimization, where the quality of the language model plateaus or degrades over the course of the alignment process. Overoptimization is often attributed to overfitting to an inaccurate reward model, and while it can be mitigated through online data collection, this is infeasible in many settings. This raises a fundamental question: Do existing offline alignment algorithms make the most of the data they have, or can their sample-efficiency be improved further? We address this question with a new algorithm for offline alignment, $\chi^2$-Preference Optimization ($\chi$PO). $\chi$PO is a one-line change to Direct Preference Optimization (DPO; Rafailov et al., 2023), which only involves modifying the logarithmic link function in the DPO objective. Despite this minimal change, $\chi$PO implicitly implements the principle of pessimism in the face of uncertainty via regularization with the $\chi^2$-divergence -- which quantifies uncertainty more effectively than KL-regularization -- and provably alleviates overoptimization, achieving sample-complexity guarantees based on single-policy concentrability -- the gold standard in offline reinforcement learning. $\chi$PO's simplicity and strong guarantees make it the first practical and general-purpose offline alignment algorithm that is provably robust to overoptimization.
Related papers
- $f$-PO: Generalizing Preference Optimization with $f$-divergence Minimization [91.43730624072226]
$f$-PO is a novel framework that generalizes and extends existing approaches.
We conduct experiments on state-of-the-art language models using benchmark datasets.
arXiv Detail & Related papers (2024-10-29T02:11:45Z) - $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPO is an adaptive preference optimization algorithm for large language models.
It balances the policy model and the reference model to achieve personalized reward margins.
It consistently outperforms DPO and SimPO across various model settings.
arXiv Detail & Related papers (2024-10-14T04:29:57Z) - Minor DPO reject penalty to increase training robustness [8.971332948872185]
Learning from human preference is a paradigm used in large-scale language model (LLM) fine-tuning step to better align pretrained LLM to human preference for downstream task.
Recently, Direct Preference Optimization (DPO) has been proposed to solve the alignment problem with a simplified RL-free method.
In this article, we analyze the working mechanism of $beta$ in DPO, disclose its syntax difference between RL algorithm and DPO, and understand the potential shortage brought by the DPO simplification.
arXiv Detail & Related papers (2024-08-19T09:29:31Z) - Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF [80.32171988565999]
We introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO)
VPO regularizes the maximum-likelihood estimate of the reward function with the corresponding value function.
Experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
arXiv Detail & Related papers (2024-05-29T17:51:42Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - $i$REPO: $i$mplicit Reward Pairwise Difference based Empirical Preference Optimization [12.266207199002604]
Large Language Models (LLM) can sometimes produce outputs that deviate from human expectations.
We propose a novel framework named $i$REPO, which utilizes implicit Reward pairwise difference regression for Empirical Preference Optimization.
We show that $i$REPO effectively achieves self-alignment using soft-label, self-generated responses and the logit of empirical AI annotators.
arXiv Detail & Related papers (2024-05-24T05:42:11Z) - Active Preference Optimization for Sample Efficient RLHF [27.772423917657626]
Reinforcement Learning from Human Feedback (RLHF) is pivotal in aligning Large Language Models with human preferences.
Current methods rely on uniformly picking prompt-generation pairs from a dataset of prompt-generations.
We develop an active-learning algorithm, $textttAPO$, which enhances model alignment by querying preference data.
arXiv Detail & Related papers (2024-02-16T08:19:34Z) - Generalized Preference Optimization: A Unified Approach to Offline Alignment [54.97015778517253]
We propose generalized preference optimization (GPO), a family of offline losses parameterized by a general class of convex functions.
GPO enables a unified view over preference optimization, encompassing existing algorithms such as DPO, IPO and SLiC as special cases.
Our results present new algorithmic toolkits and empirical insights to alignment practitioners.
arXiv Detail & Related papers (2024-02-08T15:33:09Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Preference as Reward, Maximum Preference Optimization with Importance Sampling [3.7040071165219595]
We propose a simple and intuitive off-policy preference optimization algorithm from an importance sampling view, which we call Maximum Preference Optimization (MPO)
MPO achieves the best of both worlds by combining the objectives of RLHF and IPO while being an off-policy algorithm.
arXiv Detail & Related papers (2023-12-27T06:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.