$i$REPO: $i$mplicit Reward Pairwise Difference based Empirical Preference Optimization
- URL: http://arxiv.org/abs/2405.15230v2
- Date: Tue, 29 Oct 2024 00:19:13 GMT
- Title: $i$REPO: $i$mplicit Reward Pairwise Difference based Empirical Preference Optimization
- Authors: Long Tan Le, Han Shu, Tung-Anh Nguyen, Choong Seon Hong, Nguyen H. Tran,
- Abstract summary: Large Language Models (LLM) can sometimes produce outputs that deviate from human expectations.
We propose a novel framework named $i$REPO, which utilizes implicit Reward pairwise difference regression for Empirical Preference Optimization.
We show that $i$REPO effectively achieves self-alignment using soft-label, self-generated responses and the logit of empirical AI annotators.
- Score: 12.266207199002604
- License:
- Abstract: While astonishingly capable, large Language Models (LLM) can sometimes produce outputs that deviate from human expectations. Such deviations necessitate an alignment phase to prevent disseminating untruthful, toxic, or biased information. Traditional alignment methods based on reinforcement learning often struggle with the identified instability, whereas preference optimization methods are limited by their overfitting to pre-collected hard-label datasets. In this paper, we propose a novel LLM alignment framework named $i$REPO, which utilizes implicit Reward pairwise difference regression for Empirical Preference Optimization. Particularly, $i$REPO employs self-generated datasets labeled by empirical human (or AI annotator) preference to iteratively refine the aligned policy through a novel regression-based loss function. Furthermore, we introduce an innovative algorithm backed by theoretical guarantees for achieving optimal results under ideal assumptions and providing a practical performance-gap result without such assumptions. Experimental results with Phi-2 and Mistral-7B demonstrate that $i$REPO effectively achieves self-alignment using soft-label, self-generated responses and the logit of empirical AI annotators. Furthermore, our approach surpasses preference optimization baselines in evaluations using the Language Model Evaluation Harness and Multi-turn benchmarks.
Related papers
- $f$-PO: Generalizing Preference Optimization with $f$-divergence Minimization [91.43730624072226]
$f$-PO is a novel framework that generalizes and extends existing approaches.
We conduct experiments on state-of-the-art language models using benchmark datasets.
arXiv Detail & Related papers (2024-10-29T02:11:45Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization [78.82586283794886]
We present a new offline alignment algorithm, $chi2$-Preference Optimization ($chi$PO)
$chi$PO implements the principle of pessimism in the face of uncertainty via regularization.
It is provably robust to overoptimization and achieves sample-complexity guarantees based on single-policy concentrability.
arXiv Detail & Related papers (2024-07-18T11:08:40Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Active Preference Optimization for Sample Efficient RLHF [27.772423917657626]
Reinforcement Learning from Human Feedback (RLHF) is pivotal in aligning Large Language Models with human preferences.
Current methods rely on uniformly picking prompt-generation pairs from a dataset of prompt-generations.
We develop an active-learning algorithm, $textttAPO$, which enhances model alignment by querying preference data.
arXiv Detail & Related papers (2024-02-16T08:19:34Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.