論文の概要: EarthMarker: Visual Prompt Learning for Region-level and Point-level Remote Sensing Imagery Comprehension
- arxiv url: http://arxiv.org/abs/2407.13596v2
- Date: Sat, 20 Jul 2024 10:20:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 11:30:02.563565
- Title: EarthMarker: Visual Prompt Learning for Region-level and Point-level Remote Sensing Imagery Comprehension
- Title(参考訳): EarthMarker: 領域レベルとポイントレベルのリモートセンシング画像理解のためのビジュアルプロンプト学習
- Authors: Wei Zhang, Miaoxin Cai, Tong Zhang, Jun Li, Yin Zhuang, Xuerui Mao,
- Abstract要約: EarthMarkerと呼ばれる最初の視覚的プロンプトモデルが提案され、画像レベル、領域レベル、ポイントレベルRSの解釈に優れる。
多様な多粒度視覚知覚能力を持つEarthMarkerを実現するために、クロスドメイン位相学習戦略を開発した。
RSの視覚的プロンプトデータの欠如に対処するため、マルチモーダルな視覚的プロンプト命令を備えたRSVPというデータセットを構築した。
- 参考スコア(独自算出の注目度): 12.9701635989222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in visual prompting in the natural image area have allowed users to interact with artificial intelligence (AI) tools through various visual marks such as box, point, and free-form shapes. However, due to the significant difference between the natural and remote sensing (RS) images, existing visual prompting models face challenges in RS scenarios. Moreover, RS MLLMs mainly focus on interpreting image-level RS data and only support interaction with language instruction, restricting flexibility applications in the real world. To address those limitations, the first visual prompting model named EarthMarker is proposed, which excels in image-level, region-level, and point-level RS imagery interpretation. Specifically, the visual prompts alongside images and text instruction input into the large language model (LLM), adapt models toward specific predictions and tasks. Subsequently, a sharing visual encoding method is introduced to refine multi-scale image features and visual prompt information uniformly. Furthermore, to endow the EarthMarker with versatile multi-granularity visual perception abilities, the cross-domain phased learning strategy is developed, and the disjoint parameters are optimized in a lightweight manner by leveraging both the natural and RS domain-specific knowledge. In addition, to tackle the lack of RS visual prompting data, a dataset named RSVP featuring multi-modal fine-grained visual prompting instruction is constructed. Extensive experiments are conducted to demonstrate the proposed EarthMarker's competitive performance, representing a significant advance in multi-granularity RS imagery interpretation under the visual prompting learning framework.
- Abstract(参考訳): 自然画像領域における視覚的プロンプトの最近の進歩により、ユーザーはボックス、ポイント、フリーフォームなどの様々な視覚的マークを通して人工知能(AI)ツールと対話できるようになった。
しかし、自然とリモートセンシング(RS)画像の間に大きな違いがあるため、既存の視覚刺激モデルでは、RSシナリオの課題に直面している。
さらに、RS MLLMは主に画像レベルのRSデータの解釈に重点を置いており、言語命令とのインタラクションのみをサポートし、現実世界の柔軟性を制限している。
これらの制限に対処するため、画像レベル、領域レベル、点レベルRSの解釈に優れるEarthMarkerという最初の視覚的プロンプトモデルが提案されている。
具体的には、画像とテキストが大きな言語モデル(LLM)に入力され、特定の予測やタスクに適応する。
その後、マルチスケール画像特徴と視覚的プロンプト情報を均一に洗練するために、共有視覚符号化方式を導入する。
さらに,EarthMarkerに多彩な多粒性視覚知覚能力を与えるため,クロスドメイン位相学習戦略を開発し,自然知識とRS知識の両方を活用することで,解離パラメータを軽量に最適化する。
さらに、RSの視覚的プロンプトデータ不足に対処するため、マルチモーダルな微細な視覚的プロンプトを特徴とするRSVPというデータセットを構築した。
提案したEarthMarkerの競合性能の実証実験を行い、視覚的プロンプト学習フレームワークの下での多粒性RS画像解釈の大幅な進歩を示す。
関連論文リスト
- GeoGround: A Unified Large Vision-Language Model. for Remote Sensing Visual Grounding [31.01378033872341]
GeoGroundは、HBB、OBB、マスクRSビジュアルグラウンドタスクのサポートを統合する新しいフレームワークである。
モデルトレーニングを支援するために,161kの画像テキストペアを含む大規模RS視覚指示追従データセットrefGeoを提案する。
論文 参考訳(メタデータ) (2024-11-16T05:12:11Z) - LHRS-Bot-Nova: Improved Multimodal Large Language Model for Remote Sensing Vision-Language Interpretation [21.91073335335992]
リモートセンシング(RS)画像の理解に特化したMLLMであるLHRS-Bot-Novaを紹介する。
LHRS-Bot-Novaは拡張ビジョンエンコーダと新しいブリッジ層を備えており、効率的なビジュアル圧縮と言語ビジョンアライメントを実現している。
RS画像理解タスクにおけるLHRS-Bot-Novaの優れた性能を示す大規模な実験を行った。
論文 参考訳(メタデータ) (2024-11-14T09:23:40Z) - EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models [80.00303150568696]
本稿では,既存のアプローチよりもトレーニングの少ない任意の参照視覚的プロンプトの理解を促進するための,MLLM(Multimodal Large Language Models)を提案する。
本手法は,視覚的プロンプトを,MLLMに理解可能な特定の空間領域を伝達する空間概念として応用する。
我々はまた、MLLMの領域レベルの理解を視覚的プロンプトを参照する特定の形式にさらに引き離すための幾何非依存学習パラダイム(GAL)を提案する。
論文 参考訳(メタデータ) (2024-09-25T08:22:00Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - ProGEO: Generating Prompts through Image-Text Contrastive Learning for Visual Geo-localization [0.0]
そこで本稿では,視覚性能を向上させるための2段階学習手法を提案する。
提案手法の有効性を複数の大規模視覚的ジオローカライゼーションデータセットで検証する。
論文 参考訳(メタデータ) (2024-06-04T02:28:51Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - LHRS-Bot: Empowering Remote Sensing with VGI-Enhanced Large Multimodal Language Model [10.280417075859141]
本稿では,新しい視覚言語アライメント戦略とカリキュラム学習手法を通じて,RS画像理解に適したMLLMであるLHRS-Botを紹介する。
総合的な実験により、LHRS-BotはRS画像の深い理解と、RS領域内でニュアンス推論を行う能力を示すことが示された。
論文 参考訳(メタデータ) (2024-02-04T15:46:43Z) - GeoChat: Grounded Large Vision-Language Model for Remote Sensing [65.78360056991247]
提案するGeoChatは,高解像度RS画像を用いたマルチタスク対話機能を備えた,世界初の汎用リモートセンシング大型ビジョンランゲージモデル(VLM)である。
具体的には、GeoChatは画像レベルのクエリに応答できるが、リージョン固有の対話を保持するためにリージョン入力を受け付けている。
GeoChatは、画像や領域キャプション、視覚的質問応答、シーン分類、視覚的に接地された会話、参照検出など、様々なRSタスクに対して、堅牢なゼロショット性能を示す。
論文 参考訳(メタデータ) (2023-11-24T18:59:10Z) - GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot
Attention for Vision-and-Language Navigation [52.65506307440127]
我々は,ロバストなビジュアル・アンド・ランゲージナビゲーションのためのスロットアテンションに基づく幾何学的視覚表現を学習するGeoVLNを提案する。
我々はV&L BERTを用いて言語情報と視覚情報の両方を組み込んだクロスモーダル表現を学習する。
論文 参考訳(メタデータ) (2023-05-26T17:15:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。