論文の概要: LHRS-Bot-Nova: Improved Multimodal Large Language Model for Remote Sensing Vision-Language Interpretation
- arxiv url: http://arxiv.org/abs/2411.09301v1
- Date: Thu, 14 Nov 2024 09:23:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:34.470615
- Title: LHRS-Bot-Nova: Improved Multimodal Large Language Model for Remote Sensing Vision-Language Interpretation
- Title(参考訳): LHRS-Bot-Nova:リモートセンシングビジョン言語解釈のためのマルチモーダル大言語モデルの改良
- Authors: Zhenshi Li, Dilxat Muhtar, Feng Gu, Xueliang Zhang, Pengfeng Xiao, Guangjun He, Xiaoxiang Zhu,
- Abstract要約: リモートセンシング(RS)画像の理解に特化したMLLMであるLHRS-Bot-Novaを紹介する。
LHRS-Bot-Novaは拡張ビジョンエンコーダと新しいブリッジ層を備えており、効率的なビジュアル圧縮と言語ビジョンアライメントを実現している。
RS画像理解タスクにおけるLHRS-Bot-Novaの優れた性能を示す大規模な実験を行った。
- 参考スコア(独自算出の注目度): 21.91073335335992
- License:
- Abstract: Automatically and rapidly understanding Earth's surface is fundamental to our grasp of the living environment and informed decision-making. This underscores the need for a unified system with comprehensive capabilities in analyzing Earth's surface to address a wide range of human needs. The emergence of multimodal large language models (MLLMs) has great potential in boosting the efficiency and convenience of intelligent Earth observation. These models can engage in human-like conversations, serve as unified platforms for understanding images, follow diverse instructions, and provide insightful feedbacks. In this study, we introduce LHRS-Bot-Nova, an MLLM specialized in understanding remote sensing (RS) images, designed to expertly perform a wide range of RS understanding tasks aligned with human instructions. LHRS-Bot-Nova features an enhanced vision encoder and a novel bridge layer, enabling efficient visual compression and better language-vision alignment. To further enhance RS-oriented vision-language alignment, we propose a large-scale RS image-caption dataset, generated through feature-guided image recaptioning. Additionally, we introduce an instruction dataset specifically designed to improve spatial recognition abilities. Extensive experiments demonstrate superior performance of LHRS-Bot-Nova across various RS image understanding tasks. We also evaluate different MLLM performances in complex RS perception and instruction following using a complicated multi-choice question evaluation benchmark, providing a reliable guide for future model selection and improvement. Data, code, and models will be available at https://github.com/NJU-LHRS/LHRS-Bot.
- Abstract(参考訳): 地球表面を自動的かつ迅速に理解することは、生活環境の把握と情報的意思決定に不可欠である。
このことは、地球の表面を分析し、広範囲の人的ニーズに対処する包括的な能力を持つ統一システムの必要性を浮き彫りにする。
マルチモーダル大言語モデル(MLLM)の出現は、知的地球観測の効率性と利便性を高める大きな可能性を秘めている。
これらのモデルは人間的な会話に関わり、イメージを理解し、多様な指示に従い、洞察に富んだフィードバックを提供する統一されたプラットフォームとして機能する。
本研究では,リモートセンシング(RS)画像の理解に特化したMLLMであるLHRS-Bot-Novaを紹介する。
LHRS-Bot-Novaは拡張ビジョンエンコーダと新しいブリッジ層を備えており、効率的なビジュアル圧縮と言語ビジョンアライメントを実現している。
RS指向の視覚言語アライメントをさらに強化するために,特徴誘導画像再カプセル化によって生成される大規模RS画像キャプチャデータセットを提案する。
さらに,空間認識能力の向上を目的とした命令データセットも導入する。
RS画像理解タスクにおけるLHRS-Bot-Novaの優れた性能を示す大規模な実験を行った。
また、複雑な多選択質問評価ベンチマークを用いて、複雑なRS知覚と指示に対する異なるMLLM性能の評価を行い、将来のモデル選択と改善のための信頼性の高いガイドを提供する。
データ、コード、モデルはhttps://github.com/NJU-LHRS/LHRS-Botで入手できる。
関連論文リスト
- EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - RSTeller: Scaling Up Visual Language Modeling in Remote Sensing with Rich Linguistic Semantics from Openly Available Data and Large Language Models [3.178739428363249]
我々は,Google Earth Engine (GEE) プラットフォームから取得した画像に対して,平易な OpenStreetMap (OSM) データから,意味的に豊富なキャプションを持つマルチモーダルデータセットを大規模に生成するワークフローを提案する。
本稿では,100万以上のRS画像からなるマルチモーダルデータセットであるRSTellerについて述べる。
論文 参考訳(メタデータ) (2024-08-27T02:45:26Z) - EarthMarker: Visual Prompt Learning for Region-level and Point-level Remote Sensing Imagery Comprehension [12.9701635989222]
EarthMarkerと呼ばれる最初の視覚的プロンプトモデルが提案され、画像レベル、領域レベル、ポイントレベルRSの解釈に優れる。
多様な多粒度視覚知覚能力を持つEarthMarkerを実現するために、クロスドメイン位相学習戦略を開発した。
RSの視覚的プロンプトデータの欠如に対処するため、マルチモーダルな視覚的プロンプト命令を備えたRSVPというデータセットを構築した。
論文 参考訳(メタデータ) (2024-07-18T15:35:00Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - LHRS-Bot: Empowering Remote Sensing with VGI-Enhanced Large Multimodal Language Model [10.280417075859141]
本稿では,新しい視覚言語アライメント戦略とカリキュラム学習手法を通じて,RS画像理解に適したMLLMであるLHRS-Botを紹介する。
総合的な実験により、LHRS-BotはRS画像の深い理解と、RS領域内でニュアンス推論を行う能力を示すことが示された。
論文 参考訳(メタデータ) (2024-02-04T15:46:43Z) - EarthGPT: A Universal Multi-modal Large Language Model for Multi-sensor
Image Comprehension in Remote Sensing Domain [11.902077343294707]
マルチモーダル大言語モデル(MLLM)は、自然画像領域における視覚および視覚言語タスクにおいて顕著な成功を収めている。
このギャップを埋めるために,EarthGPTと呼ばれる先駆的なMLLMが,様々なマルチセンサRS解釈タスクを統一的に統合する手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T08:57:48Z) - A New Path: Scaling Vision-and-Language Navigation with Synthetic
Instructions and Imitation Learning [70.14372215250535]
VLN(Vision-and-Language Navigation)の最近の研究は、RLエージェントを訓練して、フォトリアリスティックな環境で自然言語ナビゲーション命令を実行する。
人間の指導データが不足し、訓練環境の多様性が限られていることを考えると、これらのエージェントは複雑な言語基盤と空間言語理解に苦慮している。
我々は、密集した360度パノラマで捉えた500以上の屋内環境を取り、これらのパノラマを通して航法軌道を構築し、各軌道に対して視覚的に接地された指示を生成する。
4.2Mの命令-軌道対のデータセットは、既存の人間の注釈付きデータセットよりも2桁大きい。
論文 参考訳(メタデータ) (2022-10-06T17:59:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。