Unruh-DeWitt Quantum Computing: Realizing Quantum Shannon Theory With Quantum Fields
- URL: http://arxiv.org/abs/2407.13628v1
- Date: Thu, 18 Jul 2024 16:00:49 GMT
- Title: Unruh-DeWitt Quantum Computing: Realizing Quantum Shannon Theory With Quantum Fields
- Authors: Eric W. Aspling,
- Abstract summary: In this thesis, emphasis is placed on the theory of Tomonaga-Luttinger liquids, as the bosonization of a helical Luttinger liquid provides a pedagogical arena to construct RQI channels of fermionic systems.
Multiple experimentally real systems are proposed, and design constraints are constructed to ensure maximum channel capacity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Qubit-field quantum transduction provides numerous advantages to quantum computing, such as device-specific error-correcting codes, efficient scalability, and effective entanglement generation. An all-to-all connected bus of qubits implanted around the outside of a topological insulator, allowed to interact with the edge state, is a promising arena for transduction with flying fermionic qubits. Unruh--DeWitt detectors have allowed quantum information scientists to model entanglement properties of qubit-field interactions in many settings in a field known as Relativistic Quantum Information (RQI). Unruh--DeWitt detectors are useful tools to realize quantum Shannon theory, a subset of the theory of quantum communication, in condensed matter systems, aptly named Unruh--DeWitt quantum computers. These systems will provide quantitative measurements of communication in quantum materials that utilize coherent states for bosonic and fermionic fields. In this thesis, emphasis is placed on the well-studied theory of Tomonaga-Luttinger liquids, as the bosonization of a helical Luttinger liquid provides a pedagogical arena to construct RQI channels of fermionic systems. Multiple experimentally realizable systems are proposed, and design constraints are constructed to ensure maximum channel capacity. Furthermore, we elucidate the strength of these quantum channels using measurements from quantum Shannon theory such as coherent information, dephasing formalism, diamond distance and universality of Unruh--DeWitt quantum logic gates.
Related papers
- Transmission of quantum information through quantum fields in curved spacetimes [0.0]
We construct a quantum communication channel between two localized qubit systems mediated by a relativistic quantum field.
We express the quantum capacity of the quantum communication channel purely in terms of the correlation functions of the field and the causal propagator for the wave equation.
arXiv Detail & Related papers (2024-08-01T12:48:48Z) - Quantum integrated sensing and communication via entanglement [4.854937611943075]
We propose a novel quantum integrated sensing and communication protocol, which achieves quantum sensing under the Heisenberg limit.
We have theoretically proven its security against eavesdroppers.
arXiv Detail & Related papers (2024-04-12T09:17:43Z) - Universal Quantum Computing with Field-Mediated Unruh--DeWitt Qubits [0.0]
A set of universal quantum gates is a vital part of the theory of quantum computing.
UDW detectors in simple settings enable a collection of gates known to provide universal quantum computing.
arXiv Detail & Related papers (2024-02-15T18:19:45Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Design Constraints for Unruh-DeWitt Quantum Computers [0.0]
The Unruh-DeWitt particle detector model has found success in demonstrating quantum information channels with non-zero channel capacity.
We propose spin qubits with gate-controlled coupling to Luttinger liquids as a laboratory setting for Unruh-DeWitt detectors.
Our results point the way toward an all-to-all connected solid state quantum computer.
arXiv Detail & Related papers (2022-10-22T21:06:16Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.