論文の概要: Beyond Trend Following: Deep Learning for Market Trend Prediction
- arxiv url: http://arxiv.org/abs/2407.13685v1
- Date: Mon, 10 Jun 2024 11:42:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 08:07:30.752139
- Title: Beyond Trend Following: Deep Learning for Market Trend Prediction
- Title(参考訳): トレンドの追従を超えて: 市場トレンド予測のためのディープラーニング
- Authors: Fernando Berzal, Alberto Garcia,
- Abstract要約: 我々は、将来の市場動向を予測するために人工知能と機械学習技術を使うことを提唱する。
これらの予測は、適切に実行されれば、リターンを増やし、損失を減らすことで資産運用者のパフォーマンスを向上させることができる。
- 参考スコア(独自算出の注目度): 49.89480853499917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trend following and momentum investing are common strategies employed by asset managers. Even though they can be helpful in the proper situations, they are limited in the sense that they work just by looking at past, as if we were driving with our focus on the rearview mirror. In this paper, we advocate for the use of Artificial Intelligence and Machine Learning techniques to predict future market trends. These predictions, when done properly, can improve the performance of asset managers by increasing returns and reducing drawdowns.
- Abstract(参考訳): トレンドフォローとモーメント投資は、資産運用者が採用する一般的な戦略である。
適切な状況では役に立ちますが、バックミラーに集中して運転しているように、過去を見るだけで機能するという意味では限定的です。
本稿では,今後の市場動向を予測するための人工知能と機械学習技術の利用を提唱する。
これらの予測は、適切に実行されれば、リターンを増やし、損失を減らすことで資産運用者のパフォーマンスを向上させることができる。
関連論文リスト
- Portfolio Management using Deep Reinforcement Learning [0.0]
我々は、資産への重みの配分を補助する強化ポートフォリオマネジャーを提案する。
環境はマネージャに、資産を長く、さらには短くする自由を与えます。
マネジャーは、取引料金なしで、仮定された流動市場において金融取引を行う。
論文 参考訳(メタデータ) (2024-05-01T22:28:55Z) - Data Cross-Segmentation for Improved Generalization in Reinforcement
Learning Based Algorithmic Trading [5.75899596101548]
本稿では,学習した予測モデルからの信号に基づいて処理を行う強化学習(RL)アルゴリズムを提案する。
われわれのアルゴリズムは、ブルサ・マレーシアの20年以上のエクイティデータに基づいてテストしている。
論文 参考訳(メタデータ) (2023-07-18T16:00:02Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Do the Rewards Justify the Means? Measuring Trade-Offs Between Rewards
and Ethical Behavior in the MACHIAVELLI Benchmark [61.43264961005614]
我々は、50万以上のリッチで多様なシナリオを含む134個のChoose-Your-Own-Adventureゲームのベンチマークを開発する。
我々は、エージェントの傾向をパワー・シーキングと評価し、不使用を生じさせ、倫理的違反を犯す。
以上の結果から,エージェントは有能かつ道徳的に行動できることが示唆された。
論文 参考訳(メタデータ) (2023-04-06T17:59:03Z) - Asset Pricing and Deep Learning [0.0]
資産価格の様々な深層学習手法について検討し,特にリスク・プレミア測定について検討する。
あらゆる種類の最先端深層学習法(SOTA)の性能を実証する。
私はディープラーニングの予測を使って、投資家に大きな経済的な利益を実演します。
論文 参考訳(メタデータ) (2022-09-24T14:18:07Z) - Predicting The Stock Trend Using News Sentiment Analysis and Technical
Indicators in Spark [0.0]
機械学習モデルは、ある日のラベルを予測するのに役立つ。
その日に発表されたすべてのニュースから、その日の総合的な感情スコアが作成されます。
ランダムフォレストは63.58%のテスト精度で最高の性能を発揮した。
論文 参考訳(メタデータ) (2022-01-19T10:22:33Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
近年,Webから抽出したストック概念を用いて共有情報をマイニングし,予測結果を改善する手法が提案されている。
これまでの研究では、ストックとコンセプトのつながりは定常的であり、ストックとコンセプトのダイナミックな関連性を無視していた。
本稿では,事前定義された概念と隠れた概念から,概念指向の共有情報を適切にマイニングできる新しいストックトレンド予測フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-26T14:04:04Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
既存の手法の欠点に対処するために,rest(relational event-driven stock trend forecasting)フレームワークを提案する。
第1の欠点を是正するため,我々は,株価の文脈をモデル化し,異なる状況下での株価に対する事象情報の影響を学ぶことを提案する。
第2の欠点に対処するために,ストックグラフを構築し,関連する株からイベント情報の影響を伝達する新しい伝播層を設計する。
論文 参考訳(メタデータ) (2021-02-15T07:22:09Z) - Taking Over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders [47.32228513808444]
本稿では,敵対的学習手法を用いて,攻撃者がアルゴリズム取引システムに影響を与える現実的なシナリオを提案する。
入力ストリームに追加されると、我々の摂動は将来目に見えないデータポイントのトレーディングアルゴリズムを騙すことができることを示す。
論文 参考訳(メタデータ) (2020-10-19T06:28:05Z) - Capturing dynamics of post-earnings-announcement drift using genetic
algorithm-optimised supervised learning [3.42658286826597]
PEAD(Post-Earnings-Announcement Drift)は、最も研究されている株式市場の異常の一つである。
代わりに、機械学習ベースのアプローチを使用して、大規模なストックグループのデータを使用してPEADダイナミクスをキャプチャすることを目的としています。
論文 参考訳(メタデータ) (2020-09-07T13:27:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。