A Comprehensive Review of Recommender Systems: Transitioning from Theory to Practice
- URL: http://arxiv.org/abs/2407.13699v1
- Date: Thu, 18 Jul 2024 17:00:53 GMT
- Title: A Comprehensive Review of Recommender Systems: Transitioning from Theory to Practice
- Authors: Shaina Raza, Mizanur Rahman, Safiullah Kamawal, Armin Toroghi, Ananya Raval, Farshad Navah, Amirmohammad Kazemeini,
- Abstract summary: Recommender Systems (RS) play an integral role in enhancing user experiences by providing personalized item suggestions.
This survey reviews the progress in RS inclusively from 2017 to 2024.
It addresses challenges across various sectors, including e-commerce, healthcare, and finance.
- Score: 5.564583287027287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender Systems (RS) play an integral role in enhancing user experiences by providing personalized item suggestions. This survey reviews the progress in RS inclusively from 2017 to 2024, effectively connecting theoretical advances with practical applications. We explore the development from traditional RS techniques like content-based and collaborative filtering to advanced methods involving deep learning, graph-based models, reinforcement learning, and large language models. We also discuss specialized systems such as context-aware, review-based, and fairness-aware RS. The primary goal of this survey is to bridge theory with practice. It addresses challenges across various sectors, including e-commerce, healthcare, and finance, emphasizing the need for scalable, real-time, and trustworthy solutions. Through this survey, we promote stronger partnerships between academic research and industry practices. The insights offered by this survey aim to guide industry professionals in optimizing RS deployment and to inspire future research directions, especially in addressing emerging technological and societal trends
Related papers
- Teaching Design Science as a Method for Effective Research Development [0.24578723416255752]
Applying Design Science Research (DSR) methodology is becoming a popular working resource for Information Systems (IS) and Software engineering studies.
This chapter includes examples of DSR, a teaching methodology, learning objectives, and recommendations.
We have created a survey artifact intended to gather data on the experiences of design science users.
arXiv Detail & Related papers (2024-07-13T10:43:06Z) - Emerging Synergies Between Large Language Models and Machine Learning in
Ecommerce Recommendations [19.405233437533713]
Large language models (LLMs) have superior capabilities in basic tasks of language understanding and generation.
We introduce a representative approach to learning user and item representations using LLM as a feature encoder.
We then reviewed the latest advances in LLMs techniques for collaborative filtering enhanced recommendation systems.
arXiv Detail & Related papers (2024-03-05T08:31:00Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z) - Towards machine learning guided by best practices [0.0]
Machine learning (ML) is being used in software systems with multiple application fields, from medicine to software engineering (SE)
This thesis aims to answer research questions that help to understand the practices used and discussed by practitioners and researchers in the SE community.
arXiv Detail & Related papers (2023-04-29T10:58:37Z) - Situating Recommender Systems in Practice: Towards Inductive Learning
and Incremental Updates [9.47821118140383]
We formalize both concepts and contextualize recommender systems work from the last six years.
We then discuss why and how future work should move towards inductive learning and incremental updates for recommendation model design and evaluation.
arXiv Detail & Related papers (2022-11-11T17:29:35Z) - Reinforcement Learning Applied to Trading Systems: A Survey [5.118560450410779]
The recent achievements and the notoriety of Reinforcement Learning have increased its adoption in trading tasks.
This review attempts to promote the development of this field of study by researchers' commitment to standards adherence.
arXiv Detail & Related papers (2022-11-01T21:26:12Z) - KnowledgeCheckR: Intelligent Techniques for Counteracting Forgetting [52.623349754076024]
We provide an overview of the recommendation approaches integrated in KnowledgeCheckR.
Examples thereof are utility-based recommendation that helps to identify learning contents to be repeated in the future, collaborative filtering approaches that help to implement session-based recommendation, and content-based recommendation that supports intelligent question answering.
arXiv Detail & Related papers (2021-02-15T20:06:28Z) - Advances and Challenges in Conversational Recommender Systems: A Survey [133.93908165922804]
We provide a systematic review of the techniques used in current conversational recommender systems (CRSs)
We summarize the key challenges of developing CRSs into five directions.
These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI)
arXiv Detail & Related papers (2021-01-23T08:53:15Z) - Deep Conversational Recommender Systems: A New Frontier for
Goal-Oriented Dialogue Systems [54.06971074217952]
Conversational Recommender System (CRS) learns and models user's preferences through interactive dialogue conversations.
Deep learning approaches are applied to CRS and have produced fruitful results.
arXiv Detail & Related papers (2020-04-28T02:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.