論文の概要: Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation
- arxiv url: http://arxiv.org/abs/2407.13779v1
- Date: Tue, 2 Jul 2024 13:42:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-28 18:48:53.826627
- Title: Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation
- Title(参考訳): 標的分子生成のための遅延進化最適化の活用
- Authors: Siddartha Reddy N, Sai Prakash MV, Varun V, Vishal Vaddina, Saisubramaniam Gopalakrishnan,
- Abstract要約: 分子生成(LEOMol)における遅延進化最適化という革新的なアプローチを提案する。
LEOMolは最適化分子の効率的な生成のための生成モデリングフレームワークである。
提案手法は,従来の最先端モデルよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lead optimization is a pivotal task in the drug design phase within the drug discovery lifecycle. The primary objective is to refine the lead compound to meet specific molecular properties for progression to the subsequent phase of development. In this work, we present an innovative approach, Latent Evolutionary Optimization for Molecule Generation (LEOMol), a generative modeling framework for the efficient generation of optimized molecules. LEOMol leverages Evolutionary Algorithms, such as Genetic Algorithm and Differential Evolution, to search the latent space of a Variational AutoEncoder (VAE). This search facilitates the identification of the target molecule distribution within the latent space. Our approach consistently demonstrates superior performance compared to previous state-of-the-art models across a range of constrained molecule generation tasks, outperforming existing models in all four sub-tasks related to property targeting. Additionally, we suggest the importance of including toxicity in the evaluation of generative models. Furthermore, an ablation study underscores the improvements that our approach provides over gradient-based latent space optimization methods. This underscores the effectiveness and superiority of LEOMol in addressing the inherent challenges in constrained molecule generation while emphasizing its potential to propel advancements in drug discovery.
- Abstract(参考訳): 鉛の最適化は、医薬品発見ライフサイクルにおける医薬品設計段階における重要な課題である。
主目的は、次の発達段階に進むための特定の分子特性を満たすために鉛化合物を精製することである。
本稿では,分子の効率的な生成のための生成モデルフレームワークLEOMol(Latent Evolutionary Optimization for Molecule Generation)を提案する。
LEOMolは遺伝的アルゴリズムや微分進化などの進化的アルゴリズムを利用して、変分オートエンコーダ(VAE)の潜伏空間を探索する。
この探索は、潜在空間内の標的分子分布の同定を容易にする。
提案手法は, 従来の最先端モデルと比較して, 制約された分子生成タスクの範囲で優れた性能を示し, プロパティターゲティングに関連する4つのサブタスクすべてにおいて, 既存モデルよりも優れた性能を示す。
また, 生成モデルの評価に毒性を含めることの重要性も示唆した。
さらに、アブレーション研究は、勾配に基づく潜在空間最適化法よりも、我々のアプローチがもたらす改善を裏付けるものである。
このことは、制限された分子生成における固有の課題に対処する上でのLEOMolの有効性と優越性を浮き彫りにしつつ、薬物発見の進歩を促進する可能性を強調している。
関連論文リスト
- Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
本稿では, 事前学習対象拡散モデルと, AliDiff という関数特性を整合させる, 新規で汎用的なアライメントフレームワークを提案する。
AliDiffは、ターゲット条件の化学分布を、より高い結合親和性と構造的合理性を持つ領域にシフトする。
アリーディフは、強い分子特性を維持しながら、-7.07 Avg. Vina Scoreで最先端の結合エネルギーを持つ分子を生成できることを示す。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - Deep Lead Optimization: Leveraging Generative AI for Structural Modification [12.167178956742113]
このレビューでは、基本的な概念、目標、従来のCADD技術、最近のAIDDの進歩について論じる。
制約付きサブグラフ生成に基づく統一的な視点を導入し,デノボ設計とリード最適化の方法論を調和させる。
論文 参考訳(メタデータ) (2024-04-30T03:17:42Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
本研究では, 標的親和性, 薬物類似性, 合成性に関連する目的を組み込んだ, 汎用的な「プラグイン」分子生成モデルを構築した。
我々はPSO-ENPを多目的分子生成と最適化のための最適変種として同定する。
論文 参考訳(メタデータ) (2024-04-10T02:37:24Z) - Dual-Space Optimization: Improved Molecule Sequence Design by Latent
Prompt Transformer [78.47949363282868]
本稿では,遅延空間サンプリングとデータ空間選択を統合したDual-Space Optimization (DSO)法を提案する。
DSOは、生成モデルと合成データを所望のプロパティ値の領域にシフトさせる最適化プロセスにおいて、潜在空間生成モデルと合成データセットを反復的に更新する。
提案手法の有効性を実証し, 単一目的, 多目的, 制約された分子設計タスクにまたがる新しい性能ベンチマークを設定した。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed
Molecular Generation [23.618366377098614]
本稿では,分子潜在表現ベクトルを最適化した遅延空間におけるコスト効率のよい進化戦略を提案する。
我々は、潜伏空間と観測空間をマッピングするために、事前訓練された分子生成モデルを採用する。
提案手法といくつかの高度な手法を比較した複数の最適化タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-11-30T11:02:18Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning [0.0]
既存の生成法は、最適化中に分子特性の分布を好適にシフトできる能力に制限されていると論じる。
本稿では,分子設計のための新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-29T16:29:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。