論文の概要: Deep Lead Optimization: Leveraging Generative AI for Structural Modification
- arxiv url: http://arxiv.org/abs/2404.19230v1
- Date: Tue, 30 Apr 2024 03:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:33:46.291415
- Title: Deep Lead Optimization: Leveraging Generative AI for Structural Modification
- Title(参考訳): Deep Lead Optimization: 構造修正のための生成AIを活用する
- Authors: Odin Zhang, Haitao Lin, Hui Zhang, Huifeng Zhao, Yufei Huang, Yuansheng Huang, Dejun Jiang, Chang-yu Hsieh, Peichen Pan, Tingjun Hou,
- Abstract要約: このレビューでは、基本的な概念、目標、従来のCADD技術、最近のAIDDの進歩について論じる。
制約付きサブグラフ生成に基づく統一的な視点を導入し,デノボ設計とリード最適化の方法論を調和させる。
- 参考スコア(独自算出の注目度): 12.167178956742113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The idea of using deep-learning-based molecular generation to accelerate discovery of drug candidates has attracted extraordinary attention, and many deep generative models have been developed for automated drug design, termed molecular generation. In general, molecular generation encompasses two main strategies: de novo design, which generates novel molecular structures from scratch, and lead optimization, which refines existing molecules into drug candidates. Among them, lead optimization plays an important role in real-world drug design. For example, it can enable the development of me-better drugs that are chemically distinct yet more effective than the original drugs. It can also facilitate fragment-based drug design, transforming virtual-screened small ligands with low affinity into first-in-class medicines. Despite its importance, automated lead optimization remains underexplored compared to the well-established de novo generative models, due to its reliance on complex biological and chemical knowledge. To bridge this gap, we conduct a systematic review of traditional computational methods for lead optimization, organizing these strategies into four principal sub-tasks with defined inputs and outputs. This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD. Additionally, we introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization. Through this lens, de novo design can incorporate strategies from lead optimization to address the challenge of generating hard-to-synthesize molecules; inversely, lead optimization can benefit from the innovations in de novo design by approaching it as a task of generating molecules conditioned on certain substructures.
- Abstract(参考訳): 深層学習に基づく分子生成を用いて薬物候補の発見を加速するというアイデアは、非常に注目され、分子生成と呼ばれる自動薬物設計のための多くの深層生成モデルが開発されている。
一般に分子生成は、ゼロから新しい分子構造を生成するde novo設計と、既存の分子を薬物候補に精製するリード最適化の2つの主要な戦略を含んでいる。
中でもリード最適化は、現実世界のドラッグデザインにおいて重要な役割を担っている。
例えば、薬とは化学的に異なるが、元の薬よりも効果的であるメバッター薬の開発を可能にする。
また、フラグメントベースのドラッグデザインを容易にし、仮想スクリーンの小さなリガンドを低親和性でファーストインクラスの薬に変えることができる。
その重要性にもかかわらず、複雑な生物学的および化学的知識に依存しているため、自動鉛最適化はよく確立されたデ・ノボ生成モデルと比較すると未解明のままである。
このギャップを埋めるために、従来の計算手法を体系的に検討し、これらの戦略を入力と出力を定義した4つの主要なサブタスクにまとめる。
このレビューでは、基本的な概念、目標、従来のCADD技術、最近のAIDDの進歩について論じる。
さらに,制約付き部分グラフ生成に基づく統一的な視点を導入し,デノボ設計とリード最適化の方法論を調和させる。
このレンズを通して、de novo設計は、ハード・トゥ・シンセサイズド分子の生成という課題に対処するために、鉛最適化からの戦略を取り入れることができる。
関連論文リスト
- Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation [0.0]
分子生成(LEOMol)における遅延進化最適化という革新的なアプローチを提案する。
LEOMolは最適化分子の効率的な生成のための生成モデリングフレームワークである。
提案手法は,従来の最先端モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-02T13:42:21Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
本研究では, 標的親和性, 薬物類似性, 合成性に関連する目的を組み込んだ, 汎用的な「プラグイン」分子生成モデルを構築した。
我々はPSO-ENPを多目的分子生成と最適化のための最適変種として同定する。
論文 参考訳(メタデータ) (2024-04-10T02:37:24Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
本稿では,テンプレートのないグラフ・ツー・シーケンスパイプラインであるUAlignを紹介した。
グラフニューラルネットワークとトランスフォーマーを組み合わせることで、分子固有のグラフ構造をより効果的に活用することができる。
論文 参考訳(メタデータ) (2024-03-25T03:23:03Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - Hybrid quantum cycle generative adversarial network for small molecule
generation [0.0]
本研究は、パラメタライズド量子回路の既知の分子生成逆数ネットワークへの工学的統合に基づく、いくつかの新しい生成逆数ネットワークモデルを導入する。
導入された機械学習モデルには、強化学習原理に基づく新しいマルチパラメータ報酬関数が組み込まれている。
論文 参考訳(メタデータ) (2023-12-28T14:10:26Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
標的タンパク質の構造に基づくデノボ薬物の設計は、新規な薬物候補を提供することができる。
そこで本研究では,特定のターゲットに対して,対象薬物をスクラッチから直接生成できるTamGentという生成ソリューションを提案する。
論文 参考訳(メタデータ) (2022-08-30T09:32:39Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Scaffold-constrained molecular generation [0.0]
SMILESをベースとしたリカレントニューラルネットワーク(Recurrent Neural Network, RNN)生成モデルを構築し, 足場制約付き生成を実現するため, サンプリング手法を改良した。
本稿では,様々なタスクにおいて足場制約付き生成を行う手法について紹介する。
論文 参考訳(メタデータ) (2020-09-15T15:41:18Z) - Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning [0.0]
既存の生成法は、最適化中に分子特性の分布を好適にシフトできる能力に制限されていると論じる。
本稿では,分子設計のための新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-29T16:29:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。