論文の概要: RDBE: Reasoning Distillation-Based Evaluation Enhances Automatic Essay Scoring
- arxiv url: http://arxiv.org/abs/2407.13781v1
- Date: Wed, 3 Jul 2024 05:49:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-28 18:48:53.820252
- Title: RDBE: Reasoning Distillation-Based Evaluation Enhances Automatic Essay Scoring
- Title(参考訳): RDBE: 蒸留法に基づく評価は自動評価を促進する
- Authors: Ali Ghiasvand Mohammadkhani,
- Abstract要約: Reasoning Distillation-Based Evaluation (RDBE) は、解釈可能性を統合し、モデルスコアの背景にある理論的根拠を解明する。
実験により, データセットに考慮したすべてのスコアリングルーリックに対してRDBEの有効性が示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, various encoder-only and encoder-decoder pre-trained models like BERT and T5 have been applied to automatic essay scoring (AES) as small language models. However, existing studies have primarily treated this task akin to a classification problem, focusing solely on outputting scores in the target text without offering interpretations for the generated scores. Departing from the approaches, we introduce Reasoning Distillation-Based Evaluation (RDBE), which integrates interpretability to elucidate the rationale behind model scores while enhancing performance through initial reasoning. This interpretive capability is acquired during training by leveraging generated reasoning from a large language model (LLM) to distill a small language model (SLM). Our experimental results demonstrate the efficacy of RDBE across all scoring rubrics considered in the dataset. RDBE outperforms both zero-shot LLM generation and generation from a baseline fine-tuned model, establishing itself as state-of-the-art in the corresponding dataset. This highlights its practical interpretative output and enhanced performance.
- Abstract(参考訳): 近年,BERTやT5などのエンコーダのみおよびエンコーダデコーダ事前訓練モデルが,小言語モデルとして自動エッセイスコア(AES)に適用されている。
しかし、既存の研究では、主に分類問題に類似したタスクを扱い、生成したスコアの解釈を提示することなく、対象テキストにスコアを出力することにのみ焦点をあてている。
提案手法とは別に,解釈可能性を統合し,モデルスコアの背景にある理論的根拠を解明し,初期推論による性能向上を図るReasoning Distillation-Based Evaluation (RDBE)を導入する。
この解釈能力は、大言語モデル(LLM)から生成された推論を利用して学習中に獲得され、小言語モデル(SLM)を蒸留する。
実験により, データセットに考慮したすべてのスコアリングルーリックに対してRDBEの有効性が示された。
RDBEはゼロショットLLMの生成とベースラインの微調整モデルからの生成の両方に優れており、対応するデータセットの最先端として確立されている。
これは実際の解釈的出力とパフォーマンスの向上を強調します。
関連論文リスト
- Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Explaining Pre-Trained Language Models with Attribution Scores: An
Analysis in Low-Resource Settings [32.03184402316848]
我々は,素早いモデルから抽出した帰属スコアの妥当性と忠実度を分析した。
プロンプトパラダイムを用いることで、低リソース環境下でモデルを微調整するよりも、より妥当な説明が得られます。
論文 参考訳(メタデータ) (2024-03-08T14:14:37Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
抽象的な要約は、事前訓練された言語モデルと大規模データセットの可用性のおかげで、近年で新たな関心を集めている。
有望な結果にもかかわらず、現在のモデルはいまだに現実的に矛盾した要約を生み出すことに苦しむ。
事実整合性評価モデルを利用して、多言語要約を改善する。
論文 参考訳(メタデータ) (2022-12-20T19:52:41Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
スライス検出モデル(SDM)は、データポイントの低パフォーマンスなグループを自動的に識別する。
本稿では,NLPタスクの分類のための "Discover, Explain, improve (DEIM)" というベンチマークを提案する。
評価の結果,Edisaは情報的セマンティックな特徴を持つ誤り発生データポイントを正確に選択できることがわかった。
論文 参考訳(メタデータ) (2022-11-08T19:00:00Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
補助モデルと付加データなしで問題を解くための学習パラダイムとして,ノイズエントロピー正規化(NoiER)を提案する。
提案手法は,従来の微調整モデルと比較して平均55%改善した。
論文 参考訳(メタデータ) (2021-08-29T06:58:28Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
インテント分類は、音声言語理解(SLU)における主要な課題である
近年の研究では、余分なデータやラベルを使用することで、OOD検出性能が向上することが示されている。
本稿では、IND意図分類とOOD検出の両方をサポートしながら、INDデータのみを用いてモデルを訓練することを提案する。
論文 参考訳(メタデータ) (2021-06-28T08:27:38Z) - Zero-Resource Multi-Dialectal Arabic Natural Language Understanding [0.0]
本稿では,現代標準アラビア語(MSA)データのみに基づく事前学習言語モデルを微調整する場合に,Dialectal Arabic(DA)のゼロショット性能について検討する。
ラベルなしDAデータによる自己学習を提案し、名前付きエンティティ認識(NER)、POSタグ付け(POS)、SRD(Sarcasm Detection)のコンテキストに適用する。
その結果,未ラベルDAデータを用いた自己学習の有効性が示された。
論文 参考訳(メタデータ) (2021-04-14T02:29:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。