Structure-Accurate Medical Image Translation based on Dynamic Frequency Balance and Knowledge Guidance
- URL: http://arxiv.org/abs/2504.09441v1
- Date: Sun, 13 Apr 2025 05:48:13 GMT
- Title: Structure-Accurate Medical Image Translation based on Dynamic Frequency Balance and Knowledge Guidance
- Authors: Jiahua Xu, Dawei Zhou, Lei Hu, Zaiyi Liu, Nannan Wang, Xinbo Gao,
- Abstract summary: Diffusion model is a powerful strategy to synthesize the required medical images.<n>Existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information.<n>We propose a novel method based on dynamic frequency balance and knowledge guidance.
- Score: 60.33892654669606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal medical images play a crucial role in the precise and comprehensive clinical diagnosis. Diffusion model is a powerful strategy to synthesize the required medical images. However, existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information and the weakening of low-frequency information. Thus, we propose a novel method based on dynamic frequency balance and knowledge guidance. Specifically, we first extract the low-frequency and high-frequency components by decomposing the critical features of the model using wavelet transform. Then, a dynamic frequency balance module is designed to adaptively adjust frequency for enhancing global low-frequency features and effective high-frequency details as well as suppressing high-frequency noise. To further overcome the challenges posed by the large differences between different medical modalities, we construct a knowledge-guided mechanism that fuses the prior clinical knowledge from a visual language model with visual features, to facilitate the generation of accurate anatomical structures. Experimental evaluations on multiple datasets show the proposed method achieves significant improvements in qualitative and quantitative assessments, verifying its effectiveness and superiority.
Related papers
- Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.
We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - FgC2F-UDiff: Frequency-guided and Coarse-to-fine Unified Diffusion Model for Multi-modality Missing MRI Synthesis [6.475175425060296]
We propose a novel unified synthesis model, the Frequency-guided and Coarse-to-fine Unified Diffusion Model (FgC2F-UDiff)
arXiv Detail & Related papers (2025-01-07T04:42:45Z) - Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
We propose a novel unsupervised anomaly detection framework based on a diffusion model.
The proposed framework incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.
We validate the proposed approach on carotid US, brain MRI, and liver CT datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
variations in CT scanner models and acquisition protocols introduce significant variability in the extracted radiomic features.<n> LTDiff++ is a multiscale latent diffusion model designed to enhance feature extraction in medical imaging.
arXiv Detail & Related papers (2024-10-05T02:13:57Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
Enhancing ultrasound image quality involves balancing concurrent factors like contrast, resolution, and speckle preservation.
We propose a hybrid approach leveraging advances in diffusion models.
We conduct comprehensive experiments on simulated, in-vitro, and in-vivo data, demonstrating the efficacy of our approach.
arXiv Detail & Related papers (2023-10-31T16:51:40Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.