A novel translationally invariant supersymmetric chain with inverse-square interactions: partition function, thermodynamics and criticality
- URL: http://arxiv.org/abs/2407.13827v3
- Date: Fri, 4 Oct 2024 13:52:41 GMT
- Title: A novel translationally invariant supersymmetric chain with inverse-square interactions: partition function, thermodynamics and criticality
- Authors: Bireswar Basu-Mallick, Federico Finkel, Artemio González-López,
- Abstract summary: We introduce a novel family of translationally-invariant su$(m|n)$ spin chains with long-range interaction not directly associated to a root system.
We study the symmetries of these models, establishing the existence of a boson-fermion duality characteristic of this type of systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel family of translationally-invariant su$(m|n)$ supersymmetric spin chains with long-range interaction not directly associated to a root system. We study the symmetries of these models, establishing in particular the existence of a boson-fermion duality characteristic of this type of systems. Taking advantage of the relation of the new chains with an associated many-body supersymmetric spin dynamical model, we are able to compute their partition function in closed form for all values of $m$ and $n$ and for an arbitrary number of spins. When both $m$ and $n$ are even, we show that the partition function factorizes as the product of the partition functions of two supersymmetric Haldane-Shastry spin chains, which in turn leads to a simple expression for the thermodynamic free energy per spin in terms of the Perron eigenvalue of a suitable transfer matrix. We use this expression to study the thermodynamics of a large class of these chains, showing in particular that the specific heat presents a single Schottky peak at approximately the same temperature as a suitable $k$-level model. We also analyze the critical behavior of the new chains, and in particular the ground state degeneracy and the existence of low energy excitations with a linear energy-momentum dispersion relation. In this way we are able to show that the only possible critical chains are the ones with $m=0,1,2$. In addition, using the explicit formula for the partition function we are able to establish the criticality of the su$(0|n)$ and su$(2|n)$ chains with even $n$, and to evaluate the central charge of their associated conformal field theory.
Related papers
- Thermodynamics and criticality of supersymmetric spin chains of Haldane-Shastry type [0.0]
We analyze the thermodynamics and criticality properties of four families of su$(m|n)$ supersymmetric spin chains of Haldane-Shastry (HS) type.
arXiv Detail & Related papers (2024-08-26T17:36:32Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Symmetry shapes thermodynamics of macroscopic quantum systems [0.0]
We show that the entropy of a system can be described in terms of group-theoretical quantities.
We apply our technique to generic $N$ identical interacting $d$-level quantum systems.
arXiv Detail & Related papers (2024-02-06T18:13:18Z) - The scaling law of the arrival time of spin systems that present pretty
good transmission [49.1574468325115]
The pretty good transmission scenario implies that the probability of sending one excitation from one extreme of a spin chain to the other can reach values arbitrarily close to the unity just by waiting a time long enough.
Some works suggest that the time $t_varepsilon$ at which the pretty good transmission takes place scales as $1/(|varepsilon|)f(N)$.
We show that the exponent is not a simple function of the chain length but a power law of the number of linearly independent irrational eigenvalues of the one-excitation block of the Hamiltonian
arXiv Detail & Related papers (2023-09-05T13:13:00Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - The open Haldane-Shastry chain: thermodynamics and criticality [0.0]
We study the thermodynamics and criticality of the su($m|n$) Haldane-Shastry chain of $BC_N$ type.
We identify the critical intervals in chemical potential space and compute their corresponding Fermi velocities.
arXiv Detail & Related papers (2022-06-06T14:41:06Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
It is shown that the inhomogeneous chains are able to transfer excitations with near perfect fidelity.
It is shown that both designed chains have in common a partially ordered spectrum and well localized eigenvectors.
arXiv Detail & Related papers (2021-12-31T15:09:48Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - $\mathcal{PT}$-symmetry breaking in a Kitaev chain with one pair of
gain-loss potentials [0.0]
Parity-time symmetric systems are governed by non-Hermitian Hamiltonians with exceptional-point (EP) degeneracies.
Here, we obtain the $mathcalPT$-threshold for a one-dimensional, finite Kitaev chain.
In particular, for an even chain with zero on-site potential, we find a re-entrant $mathcalPT$-symmetric phase bounded by second-order EP contours.
arXiv Detail & Related papers (2021-03-12T03:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.