CoxSE: Exploring the Potential of Self-Explaining Neural Networks with Cox Proportional Hazards Model for Survival Analysis
- URL: http://arxiv.org/abs/2407.13849v1
- Date: Thu, 18 Jul 2024 18:32:54 GMT
- Title: CoxSE: Exploring the Potential of Self-Explaining Neural Networks with Cox Proportional Hazards Model for Survival Analysis
- Authors: Abdallah Alabdallah, Omar Hamed, Mattias Ohlsson, Thorsteinn Rögnvaldsson, Sepideh Pashami,
- Abstract summary: We explore the potential of self-explaining neural networks (SENN) for survival analysis.
We propose a new locally explainable Cox proportional hazards model, named CoxSE, by estimating a locally-linear log-hazard function.
We also propose a modification to the Neural additive (NAM) models hybrid with SENN, named CoxSENAM, which enables the control of the stability and consistency of the generated explanations.
- Score: 3.977091269971331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Cox Proportional Hazards (CPH) model has long been the preferred survival model for its explainability. However, to increase its predictive power beyond its linear log-risk, it was extended to utilize deep neural networks sacrificing its explainability. In this work, we explore the potential of self-explaining neural networks (SENN) for survival analysis. we propose a new locally explainable Cox proportional hazards model, named CoxSE, by estimating a locally-linear log-hazard function using the SENN. We also propose a modification to the Neural additive (NAM) models hybrid with SENN, named CoxSENAM, which enables the control of the stability and consistency of the generated explanations. Several experiments using synthetic and real datasets have been performed comparing with a NAM-based model, DeepSurv model explained with SHAP, and a linear CPH model. The results show that, unlike the NAM-based model, the SENN-based model can provide more stable and consistent explanations while maintaining the same expressiveness power of the black-box model. The results also show that, due to their structural design, NAM-based models demonstrated better robustness to non-informative features. Among these models, the hybrid model exhibited the best robustness.
Related papers
- A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
We employ Bayesian neural networks to capture uncertainties in a reacting flow model.
We demonstrate that BNN models can provide unique insights about the structure of uncertainty of the data-driven closure models.
The efficacy of the model is demonstrated by a priori evaluation on a dataset consisting of a variety of flame conditions and fuels.
arXiv Detail & Related papers (2024-02-28T22:19:55Z) - Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
Spiking neural networks (SNNs) have garnered considerable attention owing to their ability to run on neuromorphic devices with super-high speeds.
We propose a novel approach fully spiking denoising diffusion implicit model (FSDDIM) to construct a diffusion model within SNNs.
We demonstrate that the proposed method outperforms the state-of-the-art fully spiking generative model.
arXiv Detail & Related papers (2023-12-04T09:07:09Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Neural Frailty Machine: Beyond proportional hazard assumption in neural
survival regressions [30.018173329118184]
We present neural frailty machine (NFM), a powerful and flexible neural modeling framework for survival regressions.
Two concrete models are derived under the framework that extends neural proportional hazard models and non hazard regression models.
We conduct experimental evaluations over $6$ benchmark datasets of different scales, showing that the proposed NFM models outperform state-of-the-art survival models in terms of predictive performance.
arXiv Detail & Related papers (2023-03-18T08:15:15Z) - Extending the Neural Additive Model for Survival Analysis with EHR Data [0.0]
We extend the Neural Additive Model (NAM) by incorporating pairwise feature interaction networks.
We show that within this extended framework, we can construct non-proportional hazard models.
We apply these model architectures to build an interpretable neural network survival model for gastric cancer prediction.
arXiv Detail & Related papers (2022-11-15T00:37:44Z) - A Federated Cox Model with Non-Proportional Hazards [8.98624781242271]
Recent research has shown the potential for neural networks to improve upon classical survival models such as the Cox model.
We present a federated Cox model that accommodates this data setting and relaxes the proportional hazards assumption.
We experiment with publicly available clinical datasets and demonstrate that the federated model is able to perform as well as a standard model.
arXiv Detail & Related papers (2022-07-11T17:58:54Z) - Standalone Neural ODEs with Sensitivity Analysis [5.565364597145569]
This paper presents a continuous-depth neural ODE model capable of describing a full deep neural network.
We present a general formulation of the neural sensitivity problem and show how it is used in the NCG training.
Our evaluations demonstrate that our novel formulations lead to increased robustness and performance as compared to ResNet models.
arXiv Detail & Related papers (2022-05-27T12:16:53Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks.
We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models.
NAMs learn a linear combination of neural networks that each attend to a single input feature.
arXiv Detail & Related papers (2020-04-29T01:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.