論文の概要: LinSATNet: The Positive Linear Satisfiability Neural Networks
- arxiv url: http://arxiv.org/abs/2407.13917v1
- Date: Thu, 18 Jul 2024 22:05:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 19:23:11.974531
- Title: LinSATNet: The Positive Linear Satisfiability Neural Networks
- Title(参考訳): LinSATNet: 正の線形満足度ニューラルネットワーク
- Authors: Runzhong Wang, Yunhao Zhang, Ziao Guo, Tianyi Chen, Xiaokang Yang, Junchi Yan,
- Abstract要約: 本稿では,ニューラルネットワークに人気の高い正の線形満足度を導入する方法について検討する。
本稿では,古典的なシンクホーンアルゴリズムを拡張し,複数の辺分布の集合を共同で符号化する,最初の微分可能満足層を提案する。
- 参考スコア(独自算出の注目度): 116.65291739666303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Encoding constraints into neural networks is attractive. This paper studies how to introduce the popular positive linear satisfiability to neural networks. We propose the first differentiable satisfiability layer based on an extension of the classic Sinkhorn algorithm for jointly encoding multiple sets of marginal distributions. We further theoretically characterize the convergence property of the Sinkhorn algorithm for multiple marginals. In contrast to the sequential decision e.g.\ reinforcement learning-based solvers, we showcase our technique in solving constrained (specifically satisfiability) problems by one-shot neural networks, including i) a neural routing solver learned without supervision of optimal solutions; ii) a partial graph matching network handling graphs with unmatchable outliers on both sides; iii) a predictive network for financial portfolios with continuous constraints. To our knowledge, there exists no one-shot neural solver for these scenarios when they are formulated as satisfiability problems. Source code is available at https://github.com/Thinklab-SJTU/LinSATNet
- Abstract(参考訳): 制約をニューラルネットワークにエンコードすることは魅力的だ。
本稿では,ニューラルネットワークに人気の高い正の線形満足度を導入する方法について検討する。
本稿では,古典的なシンクホーンアルゴリズムを拡張し,複数の辺分布の集合を共同で符号化する,最初の微分可能満足層を提案する。
さらに、複数の辺数に対するシンクホーンアルゴリズムの収束特性を理論的に特徴づける。
逐次的決定 e g \ 強化学習に基づく解法とは対照的に、単発ニューラルネットワークによる制約付き(特に満足度)問題の解法について紹介する。
一 最適解の監督なしに学習した神経経路解法
二 両面に取り外し不能なグラフを扱う部分グラフ
三 継続的な制約のある金融ポートフォリオの予測ネットワーク
我々の知る限り、これらのシナリオが満足度問題として定式化されるとき、一発のニューラルソルバは存在しない。
ソースコードはhttps://github.com/Thinklab-SJTU/LinSATNetで入手できる。
関連論文リスト
- GLinSAT: The General Linear Satisfiability Neural Network Layer By Accelerated Gradient Descent [12.409030267572243]
まず、エントロピー規則化線形計画問題として、ニューラルネットワーク出力予測問題を再構成する。
数値的性能向上を伴う高速化勾配降下アルゴリズムに基づいて,その問題を解決するため,アーキテクチャGLinSATを提案する。
これは、すべての操作が微分可能で行列分解自由な、最初の一般線形満足層である。
論文 参考訳(メタデータ) (2024-09-26T03:12:53Z) - Learning to Solve Combinatorial Optimization under Positive Linear Constraints via Non-Autoregressive Neural Networks [103.78912399195005]
組合せ最適化(英: Combinatorial Optimization、CO)は、計算機科学、応用数学などにおける基本的な問題である。
本稿では, 正線形制約下でのCO問題の解法として, 非自己回帰ニューラルネットワーク群を設計する。
本研究では,施設位置,最大被覆率,旅行セールスマン問題を含む代表的CO問題の解決において,この枠組みの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-06T14:58:31Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Algorithms for Efficiently Learning Low-Rank Neural Networks [12.916132936159713]
低ランクニューラルネットワークの学習アルゴリズムについて検討する。
単層ReLUネットワークに最適な低ランク近似を学習するアルゴリズムを提案する。
低ランク$textitdeep$ネットワークをトレーニングするための新しい低ランクフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-02T01:08:29Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
この研究で、中間的神経表現がニューラルネットワークにさらなる柔軟性をもたらすことを実証する。
提案手法は, 生の入力と比較して, サンプルの複雑度を向上できることを示す。
この結果から, 深度が深層学習においてなぜ重要かという新たな視点が得られた。
論文 参考訳(メタデータ) (2020-06-24T02:44:54Z) - ODEN: A Framework to Solve Ordinary Differential Equations using
Artificial Neural Networks [0.0]
我々は、ニューラルネットワークの性能を評価するために、正確な解の知識を必要としない特定の損失関数を証明した。
ニューラルネットワークは、トレーニング領域内での継続的ソリューションの近似に熟練していることが示されている。
ユーザフレンドリで適応可能なオープンソースコード(ODE$mathcalN$)がGitHubで提供されている。
論文 参考訳(メタデータ) (2020-05-28T15:34:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。