論文の概要: DuoFormer: Leveraging Hierarchical Representations by Local and Global Attention Vision Transformer
- arxiv url: http://arxiv.org/abs/2506.12982v1
- Date: Sun, 15 Jun 2025 22:42:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:47.193569
- Title: DuoFormer: Leveraging Hierarchical Representations by Local and Global Attention Vision Transformer
- Title(参考訳): DuoFormer: ローカルおよびグローバルアテンションビジョントランスによる階層表現の活用
- Authors: Xiaoya Tang, Bodong Zhang, Man Minh Ho, Beatrice S. Knudsen, Tolga Tasdizen,
- Abstract要約: 本稿では、畳み込みニューラルネットワーク(CNN)の特徴抽出機能と視覚変換器(ViT)の高度な表現可能性とを包括的に統合した新しい階層型トランスフォーマーモデルを提案する。
インダクティブバイアスの欠如と、ViTの広範囲なトレーニングデータセットへの依存に対処するため、我々のモデルはCNNバックボーンを使用して階層的な視覚表現を生成する。
これらの表現は、革新的なパッチトークン化プロセスを通じてトランスフォーマー入力に適応し、継承されたマルチスケールの帰納バイアスを保存する。
- 参考スコア(独自算出の注目度): 1.456352735394398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the widespread adoption of transformers in medical applications, the exploration of multi-scale learning through transformers remains limited, while hierarchical representations are considered advantageous for computer-aided medical diagnosis. We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs). Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations. These representations are adapted for transformer input through an innovative patch tokenization process, preserving the inherited multi-scale inductive biases. We also introduce a scale-wise attention mechanism that directly captures intra-scale and inter-scale associations. This mechanism complements patch-wise attention by enhancing spatial understanding and preserving global perception, which we refer to as local and global attention, respectively. Our model significantly outperforms baseline models in terms of classification accuracy, demonstrating its efficiency in bridging the gap between Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). The components are designed as plug-and-play for different CNN architectures and can be adapted for multiple applications. The code is available at https://github.com/xiaoyatang/DuoFormer.git.
- Abstract(参考訳): 医療応用においてトランスフォーマーが広く採用されているにもかかわらず、トランスフォーマーによるマルチスケール学習の探索は依然として限られており、階層的表現はコンピュータ支援医療診断に有利であると考えられている。
本稿では、畳み込みニューラルネットワーク(CNN)の機能抽出機能と視覚変換器(ViT)の高度な表現可能性とを包括的に統合した新しい階層型トランスフォーマーモデルを提案する。
インダクティブバイアスの欠如と、ViTの広範囲なトレーニングデータセットへの依存に対処するため、我々のモデルはCNNバックボーンを使用して階層的な視覚表現を生成する。
これらの表現は、革新的なパッチトークン化プロセスを通じてトランスフォーマー入力に適応し、継承されたマルチスケールの帰納バイアスを保存する。
また、スケール内およびスケール間関連を直接キャプチャするスケールワイドアテンション機構も導入する。
このメカニズムは,空間的理解の向上と,局所的およびグローバル的注意と呼ばれるグローバルな認識の保存によって,パッチワイドな注意を補完する。
我々のモデルは分類精度においてベースラインモデルよりも優れており、畳み込みニューラルネットワーク(CNN)と視覚変換器(ViT)のギャップを埋めることの効率性を示している。
これらのコンポーネントは異なるCNNアーキテクチャのプラグイン・アンド・プレイとして設計されており、複数のアプリケーションに適応できる。
コードはhttps://github.com/xiaoyatang/DuoFormer.gitで公開されている。
関連論文リスト
- DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention [1.5624421399300303]
本稿では、畳み込みニューラルネットワーク(CNN)の特徴抽出機能と視覚変換器(ViT)の高度な表現可能性とを包括的に統合した新しい階層型トランスフォーマーモデルを提案する。
インダクティブバイアスの欠如と、ViTの広範囲なトレーニングデータセットへの依存に対処するため、我々のモデルはCNNバックボーンを使用して階層的な視覚表現を生成する。
これらの表現は、革新的なパッチトークン化を通じてトランスフォーマー入力に適合する。
論文 参考訳(メタデータ) (2024-07-18T22:15:35Z) - Self-Supervised Pre-Training for Table Structure Recognition Transformer [25.04573593082671]
テーブル構造認識変換器のための自己教師付き事前学習(SSP)手法を提案する。
線形射影変換器とハイブリッドCNN変換器のパフォーマンスギャップは、TSRモデルにおける視覚エンコーダのSSPにより緩和できる。
論文 参考訳(メタデータ) (2024-02-23T19:34:06Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - ConvFormer: Combining CNN and Transformer for Medical Image Segmentation [17.88894109620463]
医用画像分割のための階層型CNNとTransformerハイブリッドアーキテクチャであるConvFormerを提案する。
ゼロからトレーニングされたConvFormerは、さまざまなCNNやTransformerベースのアーキテクチャより優れ、最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2022-11-15T23:11:22Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Do Vision Transformers See Like Convolutional Neural Networks? [45.69780772718875]
近年の研究では、画像分類タスクにおいて、(Vision) Transformer Model (ViT) が同等またはそれ以上の性能を達成できることが示されている。
畳み込みネットワークのように振る舞うのか、それとも全く異なる視覚表現を学ぶのか?
例えば、ViTはすべての層にわたってより均一な表現を持つ。
論文 参考訳(メタデータ) (2021-08-19T17:27:03Z) - ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias [76.16156833138038]
コンボリューション, ie, ViTAEから内在性IBを探索するビジョントランスフォーマーを提案する。
ViTAEはいくつかの空間ピラミッド縮小モジュールを備えており、入力イメージをリッチなマルチスケールコンテキストでトークンに埋め込む。
各トランス層では、ViTAEはマルチヘッド自己保持モジュールと平行な畳み込みブロックを持ち、その特徴は融合されフィードフォワードネットワークに供給される。
論文 参考訳(メタデータ) (2021-06-07T05:31:06Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
注意の少ないvIsion Transformerは、畳み込み、完全接続層、自己アテンションが、画像パッチシーケンスを処理するためにほぼ同等な数学的表現を持つという事実に基づいている。
提案したLITは、画像分類、オブジェクト検出、インスタンス分割を含む画像認識タスクにおいて有望な性能を達成する。
論文 参考訳(メタデータ) (2021-05-29T05:26:07Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
畳み込みニューラルネットワークとトランスの両方の恩恵を受けるアーキテクチャであるTransDepthを提案します。
連続ラベルを含む画素単位での予測問題にトランスフォーマーを適用する最初の論文である。
論文 参考訳(メタデータ) (2021-03-22T18:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。