論文の概要: RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering
- arxiv url: http://arxiv.org/abs/2407.13998v2
- Date: Thu, 3 Oct 2024 00:13:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 19:38:31.884062
- Title: RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering
- Title(参考訳): RAG-QAアリーナ:長期検索質問応答に対するドメインロバスト性の評価
- Authors: Rujun Han, Yuhao Zhang, Peng Qi, Yumo Xu, Jenyuan Wang, Lan Liu, William Yang Wang, Bonan Min, Vittorio Castelli,
- Abstract要約: Long-form RobustQA (LFRQA)は、7つの異なるドメインにわたる26Kクエリと大きなコーパスをカバーする新しいデータセットである。
RAG-QAアリーナと人間の回答品質判断は高い相関関係にあることを示す。
最も競争力のあるLLMの回答の41.3%のみがLFRQAの回答に好まれており、RAG-QAアリーナは将来の研究の挑戦的な評価プラットフォームであることを示している。
- 参考スコア(独自算出の注目度): 61.19126689470398
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Question answering based on retrieval augmented generation (RAG-QA) is an important research topic in NLP and has a wide range of real-world applications. However, most existing datasets for this task are either constructed using a single source corpus or consist of short extractive answers, which fall short of evaluating large language model (LLM) based RAG-QA systems on cross-domain generalization. To address these limitations, we create Long-form RobustQA (LFRQA), a new dataset comprising human-written long-form answers that integrate short extractive answers from multiple documents into a single, coherent narrative, covering 26K queries and large corpora across seven different domains. We further propose RAG-QA Arena by directly comparing model-generated answers against LFRQA's answers using LLMs as evaluators. We show via extensive experiments that RAG-QA Arena and human judgments on answer quality are highly correlated. Moreover, only 41.3% of the most competitive LLM's answers are preferred to LFRQA's answers, demonstrating RAG-QA Arena as a challenging evaluation platform for future research.
- Abstract(参考訳): 検索拡張生成(RAG-QA)に基づく質問応答は,NLPにおける重要な研究課題であり,幅広い実世界の応用がある。
しかし,既存のほとんどのデータセットは単一ソースコーパスを用いて構築されているか,あるいは短い抽出結果で構成されているため,クロスドメイン一般化に基づく大規模言語モデル(LLM)に基づくRAG-QAシステムの評価には不十分である。
この制限に対処するために、Long-form RobustQA (LFRQA) という、複数の文書から短い抽出回答を単一のコヒーレントな物語に統合し、7つのドメインにまたがる26Kクエリと大きなコーパスをカバーする、人間による長文の回答からなる新しいデータセットを作成します。
さらに,LLMを評価器として,モデル生成回答とLFRQAの回答を直接比較することにより,RAG-QAアリーナを提案する。
RAG-QAアリーナと人間の回答品質判断は高い相関関係にあることを示す。
さらに、最も競争力のあるLLMの回答の41.3%はLFRQAの回答よりも好まれており、RAG-QAアリーナは将来の研究のための挑戦的な評価プラットフォームであることを示した。
関連論文リスト
- RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions [52.33835101586687]
会話AIエージェントはRetrieval Augmented Generation(RAG)を使用して、ユーザからの問い合わせに対して検証可能なドキュメント地上応答を提供する。
本稿では,与えられた文書コーパスから,文脈に乱れた多様な質問を効率的に生成する,新しい合成データ生成手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T16:11:29Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
大規模言語モデル(LLM)は、内部(パラメトリック)知識にのみ依存して、事実的な回答を生成するのに苦労することが多い。
この制限に対処するため、Retrieval-Augmented Generation (RAG)システムでは、外部ソースから関連情報を検索することでLLMを強化している。
我々はLLMのランキング機能を活用してW-RAGを提案する。
論文 参考訳(メタデータ) (2024-08-15T22:34:44Z) - CRAG -- Comprehensive RAG Benchmark [58.15980697921195]
Retrieval-Augmented Generation (RAG) は、Large Language Model (LLM) の知識不足を緩和するための有望なソリューションとして最近登場した。
既存のRAGデータセットは、現実世界の質問回答(QA)タスクの多様性と動的な性質を適切に表現していない。
このギャップを埋めるために、包括的RAGベンチマーク(CRAG)を導入する。
CRAGは、Webと知識グラフ(KG)検索をシミュレートする4,409組の質問応答ペアとモックAPIの実際の質問応答ベンチマークである。
論文 参考訳(メタデータ) (2024-06-07T08:43:07Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
大規模言語モデル(LLM)を用いたオープンドメイン質問応答(ODQA)の簡易かつ効果的なフレームワークを提案する。
SuRe は LLM が与えられた質問に対するより正確な回答を予測するのに役立つ。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
論文 参考訳(メタデータ) (2024-04-17T01:15:54Z) - Long-form Question Answering: An Iterative Planning-Retrieval-Generation
Approach [28.849548176802262]
長文質問応答(LFQA)は,段落の形で詳細な回答を生成するため,課題となる。
本稿では,反復計画,検索,生成を伴うLFQAモデルを提案する。
我々のモデルはLFQAタスクの様々なテキストおよび実測値の最先端モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-15T21:22:27Z) - Toward Unsupervised Realistic Visual Question Answering [70.67698100148414]
現実的なVQA(RVQA)の問題について検討し、モデルが答えられない質問(UQ)を拒絶し、答えられる質問(AQ)に答えなければならない。
1)データセットには不整合UQが多すぎること,(2)多数の注釈付きUQがトレーニングに必要とされること,の2つの欠点を最初に指摘した。
我々は、既存のVQAデータセットのAQと約29万の人間の注釈付きUQを組み合わせた新しいテストデータセットRGQAを提案する。
これは、画像と質問をランダムにペアリングして得られる擬似UQと、それを結合する。
論文 参考訳(メタデータ) (2023-03-09T06:58:29Z) - RoMQA: A Benchmark for Robust, Multi-evidence, Multi-answer Question
Answering [87.18962441714976]
堅牢でマルチエビデンスな質問応答(QA)のための最初のベンチマークであるRoMQAを紹介します。
我々は、最先端の大規模言語モデルをゼロショット、少数ショット、微調整設定で評価し、RoMQAが難しいことを発見した。
以上の結果から,RoMQAは大規模言語モデルにとって難しいベンチマークであり,より堅牢なQA手法を構築するための定量的なテストを提供する。
論文 参考訳(メタデータ) (2022-10-25T21:39:36Z) - Towards Automatic Generation of Questions from Long Answers [11.198653485869935]
本稿では,従来のAQGシステムの性能評価のための新しい評価ベンチマークを提案する。
既存のAQG法の性能は,回答の長さが大きくなるにつれて著しく低下することを示した。
トランスフォーマーに基づく手法は, 従来のAQG法よりも, 自己評価や人的評価の点で優れていた。
論文 参考訳(メタデータ) (2020-04-10T16:45:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。