論文の概要: Multi-modal Relation Distillation for Unified 3D Representation Learning
- arxiv url: http://arxiv.org/abs/2407.14007v1
- Date: Fri, 19 Jul 2024 03:43:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:53:17.671593
- Title: Multi-modal Relation Distillation for Unified 3D Representation Learning
- Title(参考訳): 統一3次元表現学習のためのマルチモーダル関係蒸留
- Authors: Huiqun Wang, Yiping Bao, Panwang Pan, Zeming Li, Xiao Liu, Ruijie Yang, Di Huang,
- Abstract要約: マルチモーダルリレーショナル蒸留(Multi-modal Relation Distillation、MRD)は、3次元バックボーンに再生可能な大型ビジョンランゲージモデル(VLM)を蒸留するために設計された3次元事前学習フレームワークである。
MRDは、各モダリティ内の関係と異なるモダリティ間の相互関係をキャプチャし、より差別的な3D形状表現を作り出すことを目的としている。
- 参考スコア(独自算出の注目度): 30.942281325891226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in multi-modal pre-training for 3D point clouds have demonstrated promising results by aligning heterogeneous features across 3D shapes and their corresponding 2D images and language descriptions. However, current straightforward solutions often overlook intricate structural relations among samples, potentially limiting the full capabilities of multi-modal learning. To address this issue, we introduce Multi-modal Relation Distillation (MRD), a tri-modal pre-training framework, which is designed to effectively distill reputable large Vision-Language Models (VLM) into 3D backbones. MRD aims to capture both intra-relations within each modality as well as cross-relations between different modalities and produce more discriminative 3D shape representations. Notably, MRD achieves significant improvements in downstream zero-shot classification tasks and cross-modality retrieval tasks, delivering new state-of-the-art performance.
- Abstract(参考訳): 近年の3次元点雲のマルチモーダル事前訓練の進歩は、3次元形状とそれに対応する2次元画像と言語記述に異質な特徴を整合させることによって有望な結果を示した。
しかし、現在の単純解はしばしばサンプル間の複雑な構造関係を見落とし、多モード学習の完全な能力を制限する可能性がある。
この問題を解決するために,3次元バックボーンに再生可能な大型ビジョンランゲージモデル(VLM)を効果的に蒸留する3次元事前学習フレームワークであるMulti-modal Relation Distillation (MRD)を導入する。
MRDは、各モダリティ内の関係と異なるモダリティ間の相互関係をキャプチャし、より差別的な3D形状表現を作り出すことを目的としている。
特に、MDDは、下流のゼロショット分類タスクとモダリティ横断検索タスクの大幅な改善を実現し、新しい最先端のパフォーマンスを提供する。
関連論文リスト
- DiHuR: Diffusion-Guided Generalizable Human Reconstruction [51.31232435994026]
一般化可能なヒト3次元再構成のための拡散誘導モデルであるDiHuRを導入し,スパース・ミニマル・オーバーラップ画像からのビュー合成について述べる。
提案手法は, 一般化可能なフィードフォワードモデルと2次元拡散モデルとの2つのキー前処理をコヒーレントな方法で統合する。
論文 参考訳(メタデータ) (2024-11-16T03:52:23Z) - Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation [3.69758875412828]
クロスD Conv 演算はフーリエ領域における位相シフトを学習することで次元ギャップを橋渡しする。
本手法は2次元と3次元の畳み込み操作間のシームレスな重み移動を可能にする。
論文 参考訳(メタデータ) (2024-11-02T13:03:44Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understanding [28.112402580426174]
TriAdapter Multi-Modal Learning (TAMM)は3つの相乗的アダプタに基づく新しい2段階学習手法である。
TAMMは、広範囲の3Dエンコーダアーキテクチャ、事前トレーニングデータセット、下流タスクの3D表現を一貫して強化する。
論文 参考訳(メタデータ) (2024-02-28T17:18:38Z) - Beyond First Impressions: Integrating Joint Multi-modal Cues for
Comprehensive 3D Representation [72.94143731623117]
既存の方法は、単に3D表現を単一ビューの2D画像と粗い親カテゴリテキストに整列させる。
十分でないシナジーは、堅牢な3次元表現は共同視覚言語空間と一致すべきという考えを無視している。
我々は,JM3Dと呼ばれる多視点共同モダリティモデリング手法を提案し,点雲,テキスト,画像の統一表現を求める。
論文 参考訳(メタデータ) (2023-08-06T01:11:40Z) - MSeg3D: Multi-modal 3D Semantic Segmentation for Autonomous Driving [15.36416000750147]
マルチモーダルな3次元セマンティックセグメンテーションモデル(MSeg3D)を提案する。
MSeg3Dは依然として堅牢性を示し、LiDARのみのベースラインを改善している。
論文 参考訳(メタデータ) (2023-03-15T13:13:03Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
既存のソリューションは通常、新しい設定への一般化性能の低下に悩まされる。
マルチビューヒューマンメッシュリカバリのためのシミュレーションに基づく新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-12-10T06:28:29Z) - Efficient Multimodal Transformer with Dual-Level Feature Restoration for
Robust Multimodal Sentiment Analysis [47.29528724322795]
マルチモーダルセンシング分析(MSA)が近年注目を集めている。
著しい進歩にもかかわらず、堅牢なMSAへの道にはまだ2つの大きな課題がある。
デュアルレベル特徴回復 (EMT-DLFR) を用いた高効率マルチモーダル変圧器 (Efficient Multimodal Transformer) を提案する。
論文 参考訳(メタデータ) (2022-08-16T08:02:30Z) - Multimodal Semi-Supervised Learning for 3D Objects [19.409295848915388]
本稿では,3次元の分類処理と検索処理の両方において,異なる3次元データのモデルのコヒーレンスを用いてデータ効率を向上させる方法について検討する。
本稿では、インスタンスレベルの一貫性制約を導入し、新しいマルチモーダル・コントラッシブ・プロトタイプ(M2CP)の損失を減らし、新しいマルチモーダル・セミ教師付き学習フレームワークを提案する。
提案するフレームワークは,モデルNet10およびモデルNet40データセットにおいて,分類タスクと検索タスクの両方において,最先端のすべての処理性能を大幅に上回っている。
論文 参考訳(メタデータ) (2021-10-22T05:33:16Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
RGB-Dジェスチャ認識のための最初のニューラルアーキテクチャサーチ(NAS)手法を提案する。
提案手法は,1)3次元中央差分畳畳み込み(3D-CDC)ファミリーによる時間的表現の強化,および多モードレート分岐と横方向接続のための最適化されたバックボーンを含む。
結果として得られたマルチレートネットワークは、RGBと深さ変調と時間力学の関係を理解するための新しい視点を提供する。
論文 参考訳(メタデータ) (2020-08-21T10:45:09Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
マルチパーソン・ヒューマン・ポーズ推定のためのデプロイフレンドリーで高速なボトムアップ・フレームワークを提案する。
我々は,人物の位置を対応する3Dポーズ表現と統一する,多人数の3Dポーズのニューラル表現を採用する。
ペア化された2Dまたは3Dポーズアノテーションが利用できない実用的な配置パラダイムを提案する。
論文 参考訳(メタデータ) (2020-08-04T07:54:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。