論文の概要: Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation
- arxiv url: http://arxiv.org/abs/2411.02441v1
- Date: Sat, 02 Nov 2024 13:03:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:02.856128
- Title: Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation
- Title(参考訳): フーリエシフト操作によるクロス-D Conv:クロス-次元伝達可能な知識ベース
- Authors: Mehmet Can Yavuz, Yang Yang,
- Abstract要約: クロスD Conv 演算はフーリエ領域における位相シフトを学習することで次元ギャップを橋渡しする。
本手法は2次元と3次元の畳み込み操作間のシームレスな重み移動を可能にする。
- 参考スコア(独自算出の注目度): 3.69758875412828
- License:
- Abstract: In biomedical imaging analysis, the dichotomy between 2D and 3D data presents a significant challenge. While 3D volumes offer superior real-world applicability, they are less available for each modality and not easy to train in large scale, whereas 2D samples are abundant but less comprehensive. This paper introduces the Cross-D Conv operation, a novel approach that bridges the dimensional gap by learning the phase shifting in the Fourier domain. Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning. The proposed architecture leverages the abundance of 2D training data to enhance 3D model performance, offering a practical solution to the multimodal data scarcity challenge in 3D medical model pretraining. Experimental validation on the RadImagenet (2D) and multimodal (3D) sets demonstrates that our approach achieves comparable or superior performance in feature quality assessment comparable to conventional methods. The enhanced convolution operation presents new opportunities for developing efficient classification and segmentation models in medical imaging. This work represents an advancement in cross-dimensional and multi-modal medical image analysis, offering a robust framework for utilizing 2D priors in 3D model pretraining or vice versa while maintaining computational efficiency.
- Abstract(参考訳): 生医学的画像解析では,2次元データと3次元データとの切り離しが重要な課題である。
3Dボリュームは、より優れた実世界の適用性を提供するが、各モードでは利用できないため、大規模なトレーニングは容易ではない。
本稿では,Fourier領域における位相シフトを学習することにより,次元ギャップを橋渡しする新しい手法であるCross-D Conv操作を提案する。
本手法は2次元と3次元の畳み込み操作間のシームレスな重み移動を可能にする。
提案アーキテクチャは,3次元医療モデルの事前トレーニングにおけるマルチモーダルデータ不足問題に対する実用的な解決策を提供するため,2次元トレーニングデータの豊富さを活用して3次元モデル性能を向上させる。
RadImagenet (2D) と Multimodal (3D) を用いた実験により,本手法が従来の手法に匹敵する特徴品質評価において,同等あるいは優れた性能を実現することを示す。
拡張畳み込み手術は、医用画像における効率的な分類とセグメンテーションモデルを開発するための新たな機会を提供する。
本研究は,3次元モデルの事前学習において2次元先行処理を利用するための堅牢なフレームワークを提供するとともに,計算効率を維持しつつ,多次元・多次元の医用画像解析の進歩を示す。
関連論文リスト
- Introducing 3D Representation for Medical Image Volume-to-Volume Translation via Score Fusion [3.3559609260669303]
Score-Fusionは、垂直に訓練された2次元拡散モデルをスコア関数空間に組み込むことで、3次元表現を効果的に学習する新しいボリューム変換モデルである。
Score-Fusionは,3次元医用画像の高分解能・モダリティ変換において,高い精度と容積忠実性が得られることを示す。
論文 参考訳(メタデータ) (2025-01-13T15:54:21Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
本稿では,効率的な3D表現の獲得を容易にするために,新しいユニバーサル3D事前学習フレームワークを提案する。
PonderV2は、11の室内および屋外ベンチマークで最先端のパフォーマンスを達成したことで、その効果が示唆された。
論文 参考訳(メタデータ) (2023-10-12T17:59:57Z) - Invariant Training 2D-3D Joint Hard Samples for Few-Shot Point Cloud
Recognition [108.07591240357306]
我々は,従来の3次元モデルとよく訓練された2次元モデルとの合同予測を用いて,少数の3次元物体の雲認識におけるデータ不足問題に取り組む。
異なるラベルに対して高い信頼性の予測を行う'結合型ハードサンプル'のトレーニングは、クラックがより効果的でないことが分かりました。
InvJointと呼ばれる提案した不変トレーニング戦略は、ハードサンプルに重点を置いているだけでなく、矛盾する2Dと3Dの不明瞭な予測の相違も求めている。
論文 参考訳(メタデータ) (2023-08-18T17:43:12Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
本稿では,2次元CNNにおける3次元特徴をエンコードする2次元モデルSlice SHift UNetを提案する。
より正確にマルチビュー機能は、ボリュームの3次元平面に沿って2次元の畳み込みを実行することで協調的に学習される。
提案手法の有効性は,多モード腹部多臓器軸 (AMOS) と Cranial Vault (BTCV) データセットを越えたマルチアトラスラベリング (Multi-Atlas Labeling Beyond the Cranial Vault) で検証した。
論文 参考訳(メタデータ) (2023-07-24T14:53:23Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
本研究では,3次元画像処理における中間特徴表現を用いた2次元ネットワークの適応手法を提案する。
我々は、ベンチマークとして3D MedMNISTデータセットと、既存の手法に匹敵する数百の高分解能CTまたはMRIスキャンからなる2つの実世界のデータセットを示す。
論文 参考訳(メタデータ) (2023-07-13T08:27:09Z) - Video Pretraining Advances 3D Deep Learning on Chest CT Tasks [63.879848037679224]
大規模自然画像分類データセットの事前学習は、データスカース2D医療タスクのモデル開発に役立っている。
これらの2Dモデルは、3Dコンピュータビジョンベンチマークで3Dモデルに勝っている。
3Dモデルのためのビデオ事前トレーニングにより、より小さなデータセットでより高性能な3D医療タスクを実現することができることを示す。
論文 参考訳(メタデータ) (2023-04-02T14:46:58Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
本稿では,2つの垂直2次元拡散モデルを用いて3次元逆問題の解法を提案する。
MRI Z軸超解像, 圧縮センシングMRI, スパースCTなどの3次元医用画像再構成作業に有効である。
論文 参考訳(メタデータ) (2023-03-15T08:28:06Z) - Joint Self-Supervised Image-Volume Representation Learning with
Intra-Inter Contrastive Clustering [31.52291149830299]
自己教師付き学習は、ラベル付きデータから特徴表現を学習することで、ラベル付きトレーニングサンプルの欠如を克服することができる。
現在の医療分野におけるSSL技術のほとんどは、2D画像または3Dボリュームのために設計されている。
本研究では2次元および3次元データモダリティの教師なし共同学習のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T18:57:44Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
トレーニング中に3次元知識を効率的に埋め込んで3次元データを扱うための,シンプルで効果的な2次元手法を提案する。
本手法は3次元画像にスライスを並べて超高分解能画像を生成する。
2次元ネットワークのみを利用した3次元ネットワークを実現する一方で、モデルの複雑さはおよそ3倍に減少する。
論文 参考訳(メタデータ) (2022-05-05T09:59:03Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D畳み込みニューラルネットワーク(CNN)は、多くのディープラーニングタスクにおいて、2D CNNよりも優れたパフォーマンスを示し始めている。
3D CNNにトランスファー学習を適用することは、パブリックにトレーニング済みの3Dモデルがないために困難である。
本研究では,ボリュームデータの2次元戦略的表現,すなわち2.75Dを提案する。
その結果,2次元CNNネットワークをボリューム情報学習に用いることが可能となった。
論文 参考訳(メタデータ) (2020-02-11T08:24:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。