論文の概要: Scale Disparity of Instances in Interactive Point Cloud Segmentation
- arxiv url: http://arxiv.org/abs/2407.14009v1
- Date: Fri, 19 Jul 2024 03:45:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:53:17.666274
- Title: Scale Disparity of Instances in Interactive Point Cloud Segmentation
- Title(参考訳): 対話型ポイントクラウドセグメンテーションにおけるインスタンスのスケール格差
- Authors: Chenrui Han, Xuan Yu, Yuxuan Xie, Yili Liu, Sitong Mao, Shunbo Zhou, Rong Xiong, Yue Wang,
- Abstract要約: 我々はClickFormerを提案する。ClickFormerは革新的なインタラクティブなポイントクラウドセグメンテーションモデルで、物と物の両方のインスタンスを正確にセグメンテーションする。
我々は、偽陽性の発生リスクを軽減するために、クエリ・ボクセル変換器にグローバルな注意を払っている。
ClickFormerは、屋内と屋外の両方のデータセットで、既存のインタラクティブなポイントクラウドセグメンテーションメソッドよりも優れています。
- 参考スコア(独自算出の注目度): 15.865365305312174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactive point cloud segmentation has become a pivotal task for understanding 3D scenes, enabling users to guide segmentation models with simple interactions such as clicks, therefore significantly reducing the effort required to tailor models to diverse scenarios and new categories. However, in the realm of interactive segmentation, the meaning of instance diverges from that in instance segmentation, because users might desire to segment instances of both thing and stuff categories that vary greatly in scale. Existing methods have focused on thing categories, neglecting the segmentation of stuff categories and the difficulties arising from scale disparity. To bridge this gap, we propose ClickFormer, an innovative interactive point cloud segmentation model that accurately segments instances of both thing and stuff categories. We propose a query augmentation module to augment click queries by a global query sampling strategy, thus maintaining consistent performance across different instance scales. Additionally, we employ global attention in the query-voxel transformer to mitigate the risk of generating false positives, along with several other network structure improvements to further enhance the model's segmentation performance. Experiments demonstrate that ClickFormer outperforms existing interactive point cloud segmentation methods across both indoor and outdoor datasets, providing more accurate segmentation results with fewer user clicks in an open-world setting.
- Abstract(参考訳): インタラクティブなポイントクラウドセグメンテーションは、3Dシーンを理解する上で重要なタスクとなり、ユーザーはクリックのような単純なインタラクションでセグメンテーションモデルをガイドすることが可能になった。
しかし、対話的なセグメンテーションの領域では、インスタンスの意味はインスタンスセグメンテーションと異なる。
既存の手法では, 物分類の区分化や, 規模格差による難しさを無視して, 物分類に焦点が当てられている。
このギャップを埋めるために、私たちはClickFormerという革新的なインタラクティブなポイントクラウドセグメンテーションモデルを提案します。
本稿では,グローバルなクエリサンプリング戦略により,クリッククエリを増大させるクエリ拡張モジュールを提案する。
さらに,クエリ・ボクセル・トランスフォーマーにおいて,偽陽性発生のリスクを軽減するため,他のネットワーク構造の改善とともに,モデルのセグメンテーション性能をさらに向上するため,グローバルな注意を払っている。
実験によると、ClickFormerは既存のインタラクティブなポイントクラウドセグメンテーションメソッドを屋内と屋外の両方のデータセットで上回り、オープンワールド環境でのユーザクリックが少なく、より正確なセグメンテーション結果を提供する。
関連論文リスト
- Learning from Exemplars for Interactive Image Segmentation [15.37506525730218]
同一カテゴリにおける1つのオブジェクトと複数のオブジェクトの両方に対して、新しい対話的セグメンテーションフレームワークを導入する。
当社のモデルでは,ターゲットIoUの85%と90%を達成するために,クリック数が2回削減されるため,ユーザの労力を約15%削減する。
論文 参考訳(メタデータ) (2024-06-17T12:38:01Z) - TETRIS: Towards Exploring the Robustness of Interactive Segmentation [39.1981941213761]
対話型セグメンテーションモデルに対するホワイトボックス逆攻撃において, 直接最適化により極端なユーザ入力を見つける手法を提案する。
本報告では,多数のモデルについて広範囲な評価を行った結果について報告する。
論文 参考訳(メタデータ) (2024-02-09T01:36:21Z) - OMG-Seg: Is One Model Good Enough For All Segmentation? [83.17068644513144]
OMG-Segは、タスク固有のクエリと出力を持つトランスフォーマーベースのエンコーダデコーダアーキテクチャである。
OMG-Segは10以上の異なるセグメンテーションタスクをサポートできるが、計算とパラメータのオーバーヘッドを大幅に削減できることを示す。
論文 参考訳(メタデータ) (2024-01-18T18:59:34Z) - Interactive segmentation in aerial images: a new benchmark and an open
access web-based tool [2.729446374377189]
近年,コンピュータビジョンにおける対話型セマンティックセマンティックセマンティクスは,人間とコンピュータの相互作用セマンティクスの理想的な状態を実現している。
本研究の目的は,対話型セグメンテーションモデルのベンチマークにより,対話型セグメンテーションとリモートセンシング分析のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-08-25T04:49:49Z) - DynaMITe: Dynamic Query Bootstrapping for Multi-object Interactive
Segmentation Transformer [58.95404214273222]
最先端のインスタンスセグメンテーション手法の多くは、訓練のために大量のピクセル精度のグランドトルースに依存している。
ユーザインタラクションを時間的クエリとして表現するDynaMITeという,より効率的なアプローチを導入する。
我々のアーキテクチャはまた、改善中にイメージ機能を再計算する必要をなくし、単一のイメージに複数のインスタンスをセグメント化するためのインタラクションを少なくする。
論文 参考訳(メタデータ) (2023-04-13T16:57:02Z) - Cluster-to-adapt: Few Shot Domain Adaptation for Semantic Segmentation
across Disjoint Labels [80.05697343811893]
クラスタ・トゥ・アダプティブ(Cluster-to-Adapt, C2A)は、セグメンテーションデータセット間のドメイン適応のための、計算的に効率的なクラスタリングベースのアプローチである。
変換された特徴空間に強制されるそのようなクラスタリングの目的は、ソースドメインとターゲットドメインのカテゴリを自動的に選択するのに役立つことを示す。
論文 参考訳(メタデータ) (2022-08-04T17:57:52Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
本研究では,様々なオープンワールドカテゴリのセマンティックオブジェクトを高密度アノテーションを使わずにセマンティックオブジェクトのセマンティックオブジェクトのセマンティック化を学習するための,新しいオープンワールドセマンティックセマンティックセマンティックセマンティクスパイプラインを提案する。
提案手法は任意のカテゴリのオブジェクトを直接分割し、3つのベンチマークデータセット上でデータラベリングを必要とするゼロショットセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2022-07-18T09:20:04Z) - Reviving Iterative Training with Mask Guidance for Interactive
Segmentation [8.271859911016719]
クリックに基づくインタラクティブセグメンテーションに関する最近の研究は、様々な推論時間最適化スキームを用いて最先端の結果を示している。
従来のステップのセグメンテーションマスクを用いた,クリックベースのインタラクティブセグメンテーションのための簡単なフィードフォワードモデルを提案する。
COCOとLVISの組み合わせで訓練されたモデルと、多様で高品質のアノテーションは、既存のすべてのモデルよりも優れたパフォーマンスを示しています。
論文 参考訳(メタデータ) (2021-02-12T15:44:31Z) - Multi-Stage Fusion for One-Click Segmentation [20.00726292545008]
対話型セグメンテーションのための多段階ガイダンスフレームワークを提案する。
提案フレームワークは,早期融合フレームワークと比較してパラメータ数の増加は無視できない。
論文 参考訳(メタデータ) (2020-10-19T17:07:40Z) - Commonality-Parsing Network across Shape and Appearance for Partially
Supervised Instance Segmentation [71.59275788106622]
そこで本稿では,マスク付分類から新しい分類へ一般化可能な,クラス非依存の共通性について考察する。
本モデルでは,COCOデータセット上のサンプルセグメンテーションにおける部分教師付き設定と少数ショット設定の両方において,最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-24T07:23:44Z) - SceneEncoder: Scene-Aware Semantic Segmentation of Point Clouds with A
Learnable Scene Descriptor [51.298760338410624]
本研究では,グローバル情報の効果を高めるために,シーン認識型ガイダンスを付加するSceneEncoderモジュールを提案する。
モジュールはシーン記述子を予測し、シーンに存在するオブジェクトのカテゴリを表現することを学習する。
また,同じラベルを持つ隣接点に対する特徴の識別を伝搬する領域類似度損失を設計する。
論文 参考訳(メタデータ) (2020-01-24T16:53:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。