論文の概要: TTA-OOD: Test-time Augmentation for Improving Out-of-Distribution Detection in Gastrointestinal Vision
- arxiv url: http://arxiv.org/abs/2407.14024v1
- Date: Fri, 19 Jul 2024 04:50:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:53:17.650367
- Title: TTA-OOD: Test-time Augmentation for Improving Out-of-Distribution Detection in Gastrointestinal Vision
- Title(参考訳): TTA-OOD:消化器内視におけるアウト・オブ・ディストリビューション検出の改善のためのテスト時間拡張
- Authors: Sandesh Pokhrel, Sanjay Bhandari, Eduard Vazquez, Tryphon Lambrou, Prashnna Gyawali, Binod Bhattarai,
- Abstract要約: テスト時間拡張セグメントをOOD検出パイプラインに導入する。
この拡張は画素空間をシフトさせ、OOD例のより明確な意味表現へと変換する。
我々は既存のOODスコアに対して評価を行った。
- 参考スコア(独自算出の注目度): 6.290783164114315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has significantly advanced the field of gastrointestinal vision, enhancing disease diagnosis capabilities. One major challenge in automating diagnosis within gastrointestinal settings is the detection of abnormal cases in endoscopic images. Due to the sparsity of data, this process of distinguishing normal from abnormal cases has faced significant challenges, particularly with rare and unseen conditions. To address this issue, we frame abnormality detection as an out-of-distribution (OOD) detection problem. In this setup, a model trained on In-Distribution (ID) data, which represents a healthy GI tract, can accurately identify healthy cases, while abnormalities are detected as OOD, regardless of their class. We introduce a test-time augmentation segment into the OOD detection pipeline, which enhances the distinction between ID and OOD examples, thereby improving the effectiveness of existing OOD methods with the same model. This augmentation shifts the pixel space, which translates into a more distinct semantic representation for OOD examples compared to ID examples. We evaluated our method against existing state-of-the-art OOD scores, showing improvements with test-time augmentation over the baseline approach.
- Abstract(参考訳): 深層学習は消化器視覚の分野を著しく進歩させ、疾患診断能力を高めている。
消化管設定における診断の自動化における大きな課題の1つは、内視鏡画像における異常な症例の検出である。
データのばらつきにより、異常な症例と正常な症例を区別するこのプロセスは、特に稀で目に見えない状況において重大な課題に直面している。
この問題に対処するため, 異常検出をアウト・オブ・ディストリビューション(OOD)検出問題として捉えた。
この設定では、健康なGIトラクタを表すID(In-Distribution)データに基づいてトレーニングされたモデルで、正常な症例を正確に識別でき、クラスに関係なく、異常がOODとして検出される。
我々は,OOD検出パイプラインにテスト時間拡張セグメントを導入し,IDとOODの区別を強化し,同一モデルによる既存のOOD手法の有効性を向上させる。
この拡張はピクセル空間をシフトさせ、IDの例と比較してOODの例に対してより明確な意味表現へと変換する。
提案手法を既存のOODスコアと比較し,ベースラインアプローチに対する試験時間増強による改善を示した。
関連論文リスト
- Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - Unsupervised Hybrid framework for ANomaly Detection (HAND) -- applied to Screening Mammogram [5.387300498478745]
マンモグラムスクリーニングに使用されるAIモデルの一般化を促進するためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
我々は,大規模デジタル検診マンモグラムからOODを検出する新しいバックボーン,HANDを開発した。
Hand Pipelineは、外部スクリーニングマンモグラムにおけるドメイン固有の品質チェックのための、自動化された効率的な計算ソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-17T20:12:50Z) - TriAug: Out-of-Distribution Detection for Imbalanced Breast Lesion in
Ultrasound [6.3267889365863414]
乳房超音波画像のための長尾OOD検出タスクに基づく新しい枠組みを提案する。
有望なOOD検出性能を維持しつつ、ID分類精度を向上させる三重項状態拡張を備える。
論文 参考訳(メタデータ) (2024-02-12T07:19:00Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Improving Out-of-Distribution Detection in Echocardiographic View
Classication through Enhancing Semantic Features [1.9892308483583199]
心エコー画像における意味的特徴表現を強化するために,ラベルスムーシングを用いた新しい手法を提案する。
ラベルの平滑化とMDベースのOOD検出を組み合わせることで,心エコーによるOOD検出の精度向上のための新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2023-08-31T06:44:42Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
オープンソースアプリケーションに機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々は、未ラベルのオンラインデータをテスト時に直接利用してOOD検出性能を向上させる、テスト時OOD検出と呼ばれる新しいパラダイムを導入する。
本稿では,入出力フィルタ,IDメモリバンク,意味的に一貫性のある目的からなる適応外乱最適化(AUTO)を提案する。
論文 参考訳(メタデータ) (2023-03-22T02:28:54Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
外周露光(OE)は、オフ・オブ・ディストリビューション(OOD)検出において強力である。
我々は,未確認のOOD状況に対してモデルの性能を良くする,新しいOEベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-09T04:36:38Z) - CVAD: A generic medical anomaly detector based on Cascade VAE [2.647674705784439]
我々は、医用画像におけるOOD検出の一般化性に着目し、自己教師付きカスケード変量自動エンコーダに基づく異常検出器(CVAD)を提案する。
我々は,複数のスケールで潜在表現を結合した変分オートエンコーダのカスケードアーキテクチャを用いて,OODデータを分布内(ID)データと区別するために識別器に供給する。
我々は、最先端のディープラーニングモデルと比較し、クラス内およびクラス間OODのための様々なオープンアクセス医療画像データセットにおいて、我々のモデルの有効性を実証する。
論文 参考訳(メタデータ) (2021-10-29T14:20:43Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。