Kinetic Inductance Parametric Converter
- URL: http://arxiv.org/abs/2407.14046v1
- Date: Fri, 19 Jul 2024 05:56:08 GMT
- Title: Kinetic Inductance Parametric Converter
- Authors: M. Khalifa, P. Feldmann, J. Salfi,
- Abstract summary: Parametric converters are used for amplifying and squeezing microwave signals in quantum computing and sensing.
In current devices, the strong localized nonlinearity of the Josephson Junction limits the amplification and squeezing.
A weak distributed nonlinearity can provide higher gain and dynamic range, when implemented as a kinetic inductance (KI) nanowire of a dirty superconductor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parametric converters are parametric amplifiers that mix two spatially separate nondegenerate modes and are commonly used for amplifying and squeezing microwave signals in quantum computing and sensing. In Josephson parametric converters, the strong localized nonlinearity of the Josephson Junction limits the amplification and squeezing, as well as the dynamic range, in current devices. In contrast, a weak distributed nonlinearity can provide higher gain and dynamic range, when implemented as a kinetic inductance (KI) nanowire of a dirty superconductor, and has additional benefits such as resilience to magnetic field, higher-temperature operation, and simplified fabrication. Here, we propose, demonstrate, and analyze the performance of a KI parametric converter that relies on the weak distributed nonlinearity of a KI nanowire. The device utilizes three-wave mixing induced by a DC current bias. We demonstrate its operation as a nondegenerate parametric amplifier with high phase-sensitive gain, reaching two-mode amplification and deamplification of $\sim$30 dB for two resonances separated by 0.8 GHz, in excellent agreement with our theory of the device. We observe a dynamic range of -108~dBm at 30 dB gain. Our device can significantly broaden applications of quantum-limited signal processing devices including phase-preserving amplification and two-mode squeezing.
Related papers
- A Near Quantum Limited Sub-GHz TiN Kinetic Inductance Traveling Wave Parametric Amplifier Operating in a Frequency Translating Mode [0.0]
kinetic-inductance traveling-wave parametric amplifier (KI-TWPA) for sub-GHz frequencies.
Use of TiN as the nonlinear element allows for a reduction of the required pump power by roughly an order of magnitude relative to NbTiN.
amplifier has the potential to enable high-sensitivity and high-speed measurements in a wide range of applications.
arXiv Detail & Related papers (2024-06-01T18:45:14Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Ab-Initio Calculations of Nonlinear Susceptibility and Multi-Phonon Mixing Processes in a 2DEG-Piezoelectric Heterostructure [41.94295877935867]
Solid-state elastic-wave phonons are a promising platform for a wide range of quantum information applications.
We propose a general architecture using piezoelectric-semiconductor heterostructures.
We show that, for this system, the strong third-order nonlinearity could enable single-phonon Kerr shift in an acoustic cavity.
arXiv Detail & Related papers (2024-02-01T03:34:41Z) - Selective Single and Double-Mode Quantum Limited Amplifier [0.0]
A quantum-limited amplifier enables the amplification of weak signals while introducing minimal noise dictated by the principles of quantum mechanics.
These amplifiers serve a broad spectrum of applications in quantum computing, including fast and accurate readout of superconducting qubits and spins.
We experimentally develop a novel quantum-limited amplifier based on superconducting kinetic inductance.
arXiv Detail & Related papers (2023-11-20T02:37:58Z) - In-situ amplification of spin echoes within a kinetic inductance
parametric amplifier [0.0]
Superconducting micro-resonators in combination with quantum-limited Josephson parametric amplifiers lead to more than four orders of magnitude improvement in sensitivity of pulsed Electron Spin Resonance (ESR) measurements.
We present a technique for coupling an ensemble of spins directly to a weakly nonlinear microwave resonator, which is engineered from a magnetic field-resilient thin superconducting film.
We perform pulsed ESR measurements with a $1$pL effective mode volume and amplify the resulting spin signal using the same device, achieving a sensitivity of $2.8 times 103$ spins in a single-shot Hahn echo measurement at a temperature of 400
arXiv Detail & Related papers (2022-11-21T10:36:41Z) - Readout of a quantum processor with high dynamic range Josephson
parametric amplifiers [132.67289832617647]
Device is matched to the 50 $Omega$ environment with a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain.
A 54-qubit Sycamore processor was used to benchmark these devices.
Design has no adverse effect on system noise, readout fidelity, or qubit dephasing.
arXiv Detail & Related papers (2022-09-16T07:34:05Z) - Three-wave mixing traveling-wave parametric amplifier with periodic
variation of the circuit parameters [0.0]
We report the implementation of a near-quantum-limited, traveling-wave parametric amplifier that uses three-wave mixing (3WM)
With a chain of 440 SNAILs, the amplifier provides up to 20 dB gain and a 3-dB bandwidth of 1 GHz.
arXiv Detail & Related papers (2022-09-15T18:12:30Z) - Topological Josephson parametric amplifier array: A proposal for directional, broadband, and low-noise amplification [39.58317527488534]
Low-noise microwave amplifiers are crucial for detecting weak signals in fields such as quantum technology and radio astronomy.
We show that compact devices with few sites can achieve exceptional performance, with gains exceeding 20 dB over a bandwidth ranging from hundreds of MHz to GHz.
The device also operates near the quantum noise limit and provides topological protection against up to 15% fabrication disorder.
arXiv Detail & Related papers (2022-07-27T18:07:20Z) - Macroscopic noise amplification by asymmetric dyads in non-Hermitian
optical systems for generative diffusion models [55.2480439325792]
asymmetric non-Hermitian dyads are promising candidates for efficient sensors and ultra-fast random number generators.
integrated light emission from such asymmetric dyads can be efficiently used for all-optical degenerative diffusion models of machine learning.
arXiv Detail & Related papers (2022-06-24T10:19:36Z) - Quantum Dot-Based Parametric Amplifiers [0.0]
Josephson parametric amplifiers (JPAs) approaching quantum-limited noise performance have been instrumental in enabling high fidelity readout of superconducting qubits and, recently, semiconductor quantum dots (QDs)
We propose that the quantum capacitance arising in electronic two-level systems can provide an alternative dissipation-less non-linear element for parametric amplification.
We experimentally demonstrate phase-sensitive parametric amplification using a QD-reservoir electron transition in a CMOS nanowire split-gate transistor embedded in a 1.8GHz superconducting lumped-element microwave cavity.
arXiv Detail & Related papers (2021-11-23T12:40:47Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.