論文の概要: OCTrack: Benchmarking the Open-Corpus Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2407.14047v1
- Date: Fri, 19 Jul 2024 05:58:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:43:32.368197
- Title: OCTrack: Benchmarking the Open-Corpus Multi-Object Tracking
- Title(参考訳): OCTrack: Open-Corpus Multi-Object Trackingのベンチマーク
- Authors: Zekun Qian, Ruize Han, Wei Feng, Junhui Hou, Linqi Song, Song Wang,
- Abstract要約: オープンコーパス多対象追跡(OCMOT)の新たな実用的課題について検討する。
我々は,OCMOT問題に対する標準評価プラットフォームを提供するために,大規模かつ包括的なベンチマークであるOCTrackBを構築した。
- 参考スコア(独自算出の注目度): 63.53176412315835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a novel yet practical problem of open-corpus multi-object tracking (OCMOT), which extends the MOT into localizing, associating, and recognizing generic-category objects of both seen (base) and unseen (novel) classes, but without the category text list as prompt. To study this problem, the top priority is to build a benchmark. In this work, we build OCTrackB, a large-scale and comprehensive benchmark, to provide a standard evaluation platform for the OCMOT problem. Compared to previous datasets, OCTrackB has more abundant and balanced base/novel classes and the corresponding samples for evaluation with less bias. We also propose a new multi-granularity recognition metric to better evaluate the generative object recognition in OCMOT. By conducting the extensive benchmark evaluation, we report and analyze the results of various state-of-the-art methods, which demonstrate the rationale of OCMOT, as well as the usefulness and advantages of OCTrackB.
- Abstract(参考訳): オープンコーパス・マルチオブジェクト・トラッキング(OCMOT)の新たな実践的問題として,MOT をローカライズ・アソシエイト・アソシエイト・アンド・認識に拡張した。
この問題を研究する上で最優先事項は、ベンチマークを構築することだ。
本研究では,大規模かつ包括的なベンチマークであるOCTrackBを構築し,OCMOT問題に対する標準評価プラットフォームを提供する。
以前のデータセットと比較すると、OCTrackBはより豊富でバランスの取れたベース/ノーベルクラスを持ち、それに対応するサンプルはバイアスが少なく評価できる。
また,OCMOTにおける生成オブジェクト認識をよりよく評価するための,新しい多粒度認識指標を提案する。
我々は,OCTrackBの有用性と利点だけでなく,OCMOTの理論的根拠を示す様々な最先端手法の結果を評価・分析する。
関連論文リスト
- MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving [10.399817864597347]
本稿では,KITTI, nuScenes, データセット間でのSOTA(State-of-the-art)性能を実現する3Dマルチオブジェクトトラッキング手法であるMCTrackを紹介する。
論文 参考訳(メタデータ) (2024-09-23T11:26:01Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
異常検出(AD)は、しばしば産業品質検査や医学的病変検査のための異常の検出に焦点が当てられている。
この研究はまず、COCOをADフィールドに拡張することにより、大規模で汎用的なCOCO-ADデータセットを構築する。
セグメンテーション分野のメトリクスにインスパイアされた我々は、より実用的なしきい値に依存したAD固有のメトリクスをいくつか提案する。
論文 参考訳(メタデータ) (2024-04-16T17:38:26Z) - Long-tail Detection with Effective Class-Margins [4.18804572788063]
本稿では, 未知のテストセットの平均精度評価基準が, マージンベースの二項分類誤差によってどのように制限されているかを示す。
テキスト・エフェクティブ・クラス・マージン・ロス(ECM)と呼ばれる新しいサロゲート目標を用いて、マージンベースの二項分類誤差を最適化する。
論文 参考訳(メタデータ) (2023-01-23T21:25:24Z) - Beyond SOT: Tracking Multiple Generic Objects at Once [141.36900362724975]
ジェネリックオブジェクト追跡(ジェネリックオブジェクト追跡、英: Generic Object Tracking、GOT)は、ビデオの最初のフレームでボックスをバウンディングすることによって指定されたターゲットオブジェクトを追跡する問題である。
大規模GOTベンチマークであるLaGOTを導入し,複数のアノテート対象オブジェクトをシーケンス毎に含む。
提案手法は単一オブジェクトのGOTデータセットに対して高い競合性を実現し,TrackingNet上での新たな技術状態が84.4%の成功率で設定されている。
論文 参考訳(メタデータ) (2022-12-22T17:59:19Z) - BURST: A Benchmark for Unifying Object Recognition, Segmentation and
Tracking in Video [58.71785546245467]
複数の既存のベンチマークには、ビデオ内のオブジェクトのトラッキングとセグメンテーションが含まれる。
異なるベンチマークデータセットとメトリクスを使用するため、それらの相互作用はほとんどありません。
高品質なオブジェクトマスクを備えた数千の多様なビデオを含むデータセットであるBURSTを提案する。
すべてのタスクは、同じデータと同等のメトリクスを使って評価されます。
論文 参考訳(メタデータ) (2022-09-25T01:27:35Z) - Tracking Every Thing in the Wild [61.917043381836656]
我々は,新しい測定基準であるTrack Every Thing Accuracy(TETA)を導入し,測定結果を3つのサブファクター(ローカライゼーション,アソシエーション,分類)に分割する。
実験の結果、TETAはトラッカーをより包括的に評価し、TETerはBDD100KとTAOに挑戦する大規模データセットを大幅に改善することがわかった。
論文 参考訳(メタデータ) (2022-07-26T15:37:19Z) - MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking [72.76685780516371]
単カメラ多目的追跡(MOT)のためのベンチマークMOTChallengeを提案する。
このベンチマークは、歩行者がトラッキングコミュニティで最も研究されているオブジェクトであるため、複数の人を追跡することに重点を置いている。
我々は,最先端トラッカーの分類と広い誤差解析を行う。
論文 参考訳(メタデータ) (2020-10-15T06:52:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。