論文の概要: Rasa: Building Expressive Speech Synthesis Systems for Indian Languages in Low-resource Settings
- arxiv url: http://arxiv.org/abs/2407.14056v2
- Date: Fri, 30 Aug 2024 22:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 17:21:21.122331
- Title: Rasa: Building Expressive Speech Synthesis Systems for Indian Languages in Low-resource Settings
- Title(参考訳): Rasa:低リソース環境下でのインド言語のための表現型音声合成システムの構築
- Authors: Praveen Srinivasa Varadhan, Ashwin Sankar, Giri Raju, Mitesh M. Khapra,
- Abstract要約: Rasaは、インド初の多言語表現型TSデータセットである。
これには、アサメ語、ベンガル語、タミル語という3つの言語をカバーする6つのエクマン感情のそれぞれについて、10時間の中立的なスピーチと1-3時間の表現的なスピーチが含まれている。
我々のアブレーション研究では、MUSHRAのスコアが示すように、中立な1時間と表現的なデータの30分でフェアなシステムが得られることが判明した。
- 参考スコア(独自算出の注目度): 17.350707580013054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We release Rasa, the first multilingual expressive TTS dataset for any Indian language, which contains 10 hours of neutral speech and 1-3 hours of expressive speech for each of the 6 Ekman emotions covering 3 languages: Assamese, Bengali, & Tamil. Our ablation studies reveal that just 1 hour of neutral and 30 minutes of expressive data can yield a Fair system as indicated by MUSHRA scores. Increasing neutral data to 10 hours, with minimal expressive data, significantly enhances expressiveness. This offers a practical recipe for resource-constrained languages, prioritizing easily obtainable neutral data alongside smaller amounts of expressive data. We show the importance of syllabically balanced data and pooling emotions to enhance expressiveness. We also highlight challenges in generating specific emotions, e.g., fear and surprise.
- Abstract(参考訳): このデータセットは、アサメ、ベンガル、タミルの3つの言語をカバーする6つのエクマン感情のそれぞれに対して、10時間の中立なスピーチと1-3時間の表現的なスピーチを含む。
我々のアブレーション研究では、MUSHRAのスコアが示すように、中立な1時間と表現的なデータの30分でフェアなシステムが得られることが判明した。
中性データを10時間まで増加させ、最小限の表現データで表現性を著しく向上させる。
これはリソース制約のある言語に実用的なレシピを提供し、少ない量の表現的データとともに容易に入手可能な中立データを優先順位付けする。
我々は,表現力を高めるために,音節的にバランスの取れたデータとプール感情の重要性を示す。
また、恐怖や驚きといった特定の感情を生み出す上での課題も強調します。
関連論文リスト
- BhasaAnuvaad: A Speech Translation Dataset for 13 Indian Languages [27.273651323572786]
インド語における広く使われている自動音声翻訳システムの性能を評価する。
口語と非公式の言語を正確に翻訳できるシステムが存在しないことは顕著である。
BhasaAnuvaadを紹介します。ASTの公開データセットとしては最大で、22のインド言語と英語のうち13が対象です。
論文 参考訳(メタデータ) (2024-11-07T13:33:34Z) - Navigating Text-to-Image Generative Bias across Indic Languages [53.92640848303192]
本研究ではインドで広く話されているIndic言語に対するテキスト・ツー・イメージ(TTI)モデルのバイアスについて検討する。
これらの言語における主要なTTIモデルの生成的パフォーマンスと文化的関連性を評価し,比較する。
論文 参考訳(メタデータ) (2024-08-01T04:56:13Z) - MELD-ST: An Emotion-aware Speech Translation Dataset [29.650945917540316]
本稿では,感情認識型音声翻訳タスクのためのMELD-STデータセットについて述べる。
各言語ペアには、MELDデータセットからの感情ラベルを付加した約10,000の発話が含まれている。
データセット上のSeamlessM4Tモデルを用いたベースライン実験は、感情ラベルによる微調整によって、いくつかの環境での翻訳性能が向上することを示している。
論文 参考訳(メタデータ) (2024-05-21T22:40:38Z) - nEMO: Dataset of Emotional Speech in Polish [0.0]
nEMO(nEMO)は、ポーランド語で書かれた感情表現のコーパスである。
データセットは、9人の俳優が6つの感情状態を描いた3時間以上のサンプルで構成されている。
使用したテキストはポーランド語の音声学を適切に表現するために慎重に選択された。
論文 参考訳(メタデータ) (2024-04-09T13:18:52Z) - CLARA: Multilingual Contrastive Learning for Audio Representation
Acquisition [5.520654376217889]
CLARAはラベル付きデータへの依存を最小限に抑え、言語間の一般化を強化する。
我々のアプローチは、主観的評価問題を克服し、音声における感情的ニュアンスを十分に捉えている。
低リソース言語に適応し、多言語音声表現学習の進歩を示す。
論文 参考訳(メタデータ) (2023-10-18T09:31:56Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
図形言語は人間のコミュニケーションに浸透するが、NLPでは比較的過小評価されている。
Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili, Yorubaの7つの多様な言語に関するデータセットを作成しました。
我々のデータセットから,各言語は,同じ領域から派生した言語間で最も高い重なり合いを持つ,図形表現の文化的・地域的概念に依存していることが明らかとなった。
全ての言語は、事前学習データと微調整データの可用性を反映した性能の変化により、英語と比較して大きな欠陥がある。
論文 参考訳(メタデータ) (2023-05-25T15:30:31Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Learning to Speak from Text: Zero-Shot Multilingual Text-to-Speech with
Unsupervised Text Pretraining [65.30528567491984]
本稿では,対象言語に対するテキストのみのデータを用いたゼロショット多言語TS法を提案する。
テキストのみのデータを使用することで、低リソース言語向けのTSシステムの開発が可能になる。
評価の結果,文字誤り率が12%未満のゼロショットTSは,見当たらない言語では高い知能性を示した。
論文 参考訳(メタデータ) (2023-01-30T00:53:50Z) - MultiSpider: Towards Benchmarking Multilingual Text-to-SQL Semantic
Parsing [48.216386761482525]
英語、ドイツ語、フランス語、スペイン語、日本語、中国語、ベトナム語)をカバーする最大多言語テキストスキーマデータセットであるMultiSpiderを提案する。
3つの典型的な設定(ゼロショット、モノリンガル、マルチリンガル)の下での実験結果から、非英語言語では6.1%の精度の低下が見られる。
また、単純なフレームワーク拡張フレームワークであるSAVe(Augmentation-with-Verification)を提案する。これは、全体的なパフォーマンスを約1.8%向上させ、言語間の29.5%のパフォーマンスギャップを埋める。
論文 参考訳(メタデータ) (2022-12-27T13:58:30Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
音声ファイルを含む9,724のサンプルとその感情ラベル付きアノテーションを含むマンダリン感情音声データセットを導入,公開する。
入力として追加の参照音声を必要とするこれらのモデルとは異なり、我々のモデルは入力テキストから直接感情ラベルを予測し、感情埋め込みに基づいてより表現力のある音声を生成することができる。
実験段階では、まず感情分類タスクによってデータセットの有効性を検証し、次に提案したデータセットに基づいてモデルをトレーニングし、一連の主観評価を行う。
論文 参考訳(メタデータ) (2021-06-17T08:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。