論文の概要: Navigating Text-to-Image Generative Bias across Indic Languages
- arxiv url: http://arxiv.org/abs/2408.00283v1
- Date: Thu, 1 Aug 2024 04:56:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 21:45:24.446754
- Title: Navigating Text-to-Image Generative Bias across Indic Languages
- Title(参考訳): インデックス言語間でテキストから画像への生成バイアスをナビゲートする
- Authors: Surbhi Mittal, Arnav Sudan, Mayank Vatsa, Richa Singh, Tamar Glaser, Tal Hassner,
- Abstract要約: 本研究ではインドで広く話されているIndic言語に対するテキスト・ツー・イメージ(TTI)モデルのバイアスについて検討する。
これらの言語における主要なTTIモデルの生成的パフォーマンスと文化的関連性を評価し,比較する。
- 参考スコア(独自算出の注目度): 53.92640848303192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research investigates biases in text-to-image (TTI) models for the Indic languages widely spoken across India. It evaluates and compares the generative performance and cultural relevance of leading TTI models in these languages against their performance in English. Using the proposed IndicTTI benchmark, we comprehensively assess the performance of 30 Indic languages with two open-source diffusion models and two commercial generation APIs. The primary objective of this benchmark is to evaluate the support for Indic languages in these models and identify areas needing improvement. Given the linguistic diversity of 30 languages spoken by over 1.4 billion people, this benchmark aims to provide a detailed and insightful analysis of TTI models' effectiveness within the Indic linguistic landscape. The data and code for the IndicTTI benchmark can be accessed at https://iab-rubric.org/resources/other-databases/indictti.
- Abstract(参考訳): 本研究ではインドで広く話されているIndic言語に対するテキスト・ツー・イメージ(TTI)モデルのバイアスについて検討する。
これらの言語における主要なTTIモデルの生成的パフォーマンスと文化的関連性を評価し,比較する。
IndicTTIベンチマークを用いて、2つのオープンソース拡散モデルと2つの商用生成APIを備えた30のIndic言語の性能を総合的に評価する。
このベンチマークの主な目的は、これらのモデルにおけるIndic言語のサポートを評価し、改善が必要な領域を特定することである。
このベンチマークは、14億人以上の人々が話す30の言語の言語多様性を考慮し、TTIモデルの有効性の詳細な、洞察に富んだ分析を行うことを目的としている。
IndicTTIベンチマークのデータとコードはhttps://iab-rubric.org/resources/other-databases/indicttiでアクセスできる。
関連論文リスト
- BhasaAnuvaad: A Speech Translation Dataset for 14 Indian Languages [27.273651323572786]
インド語における広く使われている自動音声翻訳システムの性能を評価する。
口語と非公式の言語を正確に翻訳できるシステムが存在しないことは顕著である。
BhasaAnuvaadを紹介します。これは、14の予定のインド言語を含む、AST用の最大の公開データセットです。
論文 参考訳(メタデータ) (2024-11-07T13:33:34Z) - Decoding the Diversity: A Review of the Indic AI Research Landscape [0.7864304771129751]
インド、パキスタン、バングラデシュ、スリランカ、ネパール、ブータンなどインド亜大陸で話されている言語である。
本稿では,Indic言語における大規模言語モデル(LLM)研究の方向性について概観する。
論文 参考訳(メタデータ) (2024-06-13T19:55:20Z) - DIALECTBENCH: A NLP Benchmark for Dialects, Varieties, and Closely-Related Languages [49.38663048447942]
DIALECTBENCHは,NLPの品種に対する大規模ベンチマークとして初めて提案される。
これにより、異なる言語でNLPシステムの性能を総合的に評価することができる。
標準言語と非標準言語間の性能格差の相当な証拠を提供する。
論文 参考訳(メタデータ) (2024-03-16T20:18:36Z) - V\=arta: A Large-Scale Headline-Generation Dataset for Indic Languages [21.018996007110324]
このデータセットには14の異なるIndic言語(および英語)の480万のニュース記事が含まれている。
私たちの知る限りでは、現在利用可能なIndic言語のキュレートされた記事のコレクションとしては、これが最大です。
論文 参考訳(メタデータ) (2023-05-10T03:07:17Z) - Towards Leaving No Indic Language Behind: Building Monolingual Corpora,
Benchmark and Models for Indic Languages [19.91781398526369]
3つの重要な軸に沿ってコントリビューションを行うことで、Indic言語のNLU機能を改善することを目指している。
具体的には、4つの言語ファミリーの24言語をカバーする20.9Bトークンで、最大のモノリンガルコーパスであるIndicCorpをキュレートする。
我々は、20言語をカバーする9つの異なるNLUタスクからなる人間によるベンチマークIndicXTREMEを作成する。
言語やタスク全体にわたって、IndicXTREMEには合計105の評価セットが含まれており、そのうち52が新たな文献への貢献である。
論文 参考訳(メタデータ) (2022-12-11T04:45:50Z) - IndicSUPERB: A Speech Processing Universal Performance Benchmark for
Indian languages [16.121708272597154]
インド12言語における音声認識のためのIndicSUPERBベンチマークをリリースする。
一般的に使用されているベースラインベンチマークとともに、さまざまな自己教師付きモデルをトレーニングし、評価する。
言語固有の微調整モデルはほとんどのタスクのベースラインよりも正確であることを示す。
論文 参考訳(メタデータ) (2022-08-24T20:14:52Z) - Building Machine Translation Systems for the Next Thousand Languages [102.24310122155073]
1500以上の言語を対象としたクリーンでWebマイニングされたデータセットの構築、低サービス言語のための実践的なMTモデルの開発、これらの言語に対する評価指標の限界の検証という3つの研究領域における結果について述べる。
我々の研究は、現在調査中の言語のためのMTシステムの構築に取り組んでいる実践者にとって有用な洞察を提供し、データスパース設定における多言語モデルの弱点を補完する研究の方向性を強調したいと考えています。
論文 参考訳(メタデータ) (2022-05-09T00:24:13Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
言語間TRansfer Evaluation of Multilinguals XTREMEは、40言語および9タスクにわたる多言語表現の言語間一般化能力を評価するためのベンチマークである。
我々は、英語でテストされたモデルは、多くのタスクにおいて人間のパフォーマンスに達するが、言語間変換されたモデルの性能にはまだ大きなギャップがあることを示した。
論文 参考訳(メタデータ) (2020-03-24T19:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。