論文の概要: DisenSemi: Semi-supervised Graph Classification via Disentangled Representation Learning
- arxiv url: http://arxiv.org/abs/2407.14081v1
- Date: Fri, 19 Jul 2024 07:31:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 18:33:40.755732
- Title: DisenSemi: Semi-supervised Graph Classification via Disentangled Representation Learning
- Title(参考訳): DisenSemi: アンタングル表現学習による半教師付きグラフ分類
- Authors: Yifan Wang, Xiao Luo, Chong Chen, Xian-Sheng Hua, Ming Zhang, Wei Ju,
- Abstract要約: 本研究では,半教師付きグラフ分類のための不整合表現を学習するDisenSemiという新しいフレームワークを提案する。
具体的には,非教師付きモデルと教師なしモデルの両方に対して因子ワイドグラフ表現を生成するために,非教師付きグラフエンコーダを提案する。
教師付き客観情報と相互情報(MI)に基づく制約によって2つのモデルを訓練する。
- 参考スコア(独自算出の注目度): 36.85439684013268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph classification is a critical task in numerous multimedia applications, where graphs are employed to represent diverse types of multimedia data, including images, videos, and social networks. Nevertheless, in real-world scenarios, labeled graph data can be limited or scarce. To address this issue, we focus on the problem of semi-supervised graph classification, which involves both supervised and unsupervised models learning from labeled and unlabeled data. In contrast to recent approaches that transfer the entire knowledge from the unsupervised model to the supervised one, we argue that an effective transfer should only retain the relevant semantics that align well with the supervised task. In this paper, we propose a novel framework named DisenSemi, which learns disentangled representation for semi-supervised graph classification. Specifically, a disentangled graph encoder is proposed to generate factor-wise graph representations for both supervised and unsupervised models. Then we train two models via supervised objective and mutual information (MI)-based constraints respectively. To ensure the meaningful transfer of knowledge from the unsupervised encoder to the supervised one, we further define an MI-based disentangled consistency regularization between two models and identify the corresponding rationale that aligns well with the current graph classification task. Experimental results on a range of publicly accessible datasets reveal the effectiveness of our DisenSemi.
- Abstract(参考訳): グラフ分類は多くのマルチメディアアプリケーションにおいて重要なタスクであり、画像、ビデオ、ソーシャルネットワークを含む様々な種類のマルチメディアデータを表現するためにグラフが使用される。
それでも、実世界のシナリオでは、ラベル付きグラフデータは制限されるか不足する可能性がある。
この問題に対処するために,ラベル付きおよびラベルなしデータから学習する教師なしモデルと教師なしモデルの両方を含む半教師付きグラフ分類の問題に焦点をあてる。
教師なしモデルから教師なしモデルへ知識全体を伝達する最近のアプローチとは対照的に、効果的な伝達は教師付きタスクとうまく整合する関連する意味論のみを保持するべきであると論じる。
本稿では,半教師付きグラフ分類のためのアンタングル表現を学習するDisenSemiという新しいフレームワークを提案する。
具体的には,非教師付きモデルと教師なしモデルの両方に対して因子ワイドグラフ表現を生成するために,非教師付きグラフエンコーダを提案する。
次に、教師付き客観情報と相互情報(MI)に基づく制約により、2つのモデルを訓練する。
教師なしエンコーダから教師なしエンコーダへの知識の有意義な伝達を保証するため,MIに基づく2つのモデル間の不整合整合正則化を定義し,現在のグラフ分類タスクとよく一致した対応する理性を特定する。
公開データセットのさまざまな実験結果から,DisenSemiの有効性が明らかとなった。
関連論文リスト
- Variational Graph Auto-Encoder Based Inductive Learning Method for Semi-Supervised Classification [10.497590357666114]
帰納的グラフ表現学習のための自己ラベル拡張VGAEモデルを提案する。
学習にラベル情報を活用するため,本モデルではノードラベルをワンホット符号化入力とし,モデルトレーニングにおいてラベル再構成を行う。
提案したモデルアーカイブは、セミ教師付き学習環境下でのノード分類において、特に優越する結果を約束する。
論文 参考訳(メタデータ) (2024-03-26T08:59:37Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Domain Adaptive Graph Classification [0.0]
本稿では,グラフトポロジを二分枝から探索し,二分枝学習による領域差を緩和するDual Adversarial Graph Representation Learning(DAGRL)を提案する。
提案手法では,適応的な摂動を二重分岐に組み込み,ソースとターゲット分布をドメインの整合性に対応させる。
論文 参考訳(メタデータ) (2023-12-21T02:37:56Z) - TGNN: A Joint Semi-supervised Framework for Graph-level Classification [34.300070497510276]
我々は、ツイングラフニューラルネットワーク(TGNN)と呼ばれる新しい半教師付きフレームワークを提案する。
グラフ構造情報を補完的なビューから探索するために、TGNNにはメッセージパッシングモジュールとグラフカーネルモジュールがあります。
我々は,TGNNを様々な公開データセットで評価し,高い性能が得られることを示す。
論文 参考訳(メタデータ) (2023-04-23T15:42:11Z) - FairGen: Towards Fair Graph Generation [76.34239875010381]
フェアネスを考慮したグラフ生成モデルFairGenを提案する。
我々のモデルはラベルインフォームドグラフ生成モジュールと公正表現学習モジュールを共同で訓練する。
Webベースのグラフを含む7つの実世界のデータセットの実験結果は、FairGenが最先端のグラフ生成モデルと同等のパフォーマンスを得ることを示した。
論文 参考訳(メタデータ) (2023-03-30T23:30:42Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
シーングラフモデルは通常、大量のラベル付きデータを人間のアノテーションで教師付き学習する必要がある。
本研究では,人間ラベルデータを用いずにシーングラフモデルを訓練できる視覚関係学習の新しいパラダイムである視覚遠方監視を提案する。
包括的な実験結果から、我々の遠隔監視モデルは、弱い監督と半監督のベースラインよりも優れています。
論文 参考訳(メタデータ) (2021-03-29T06:35:24Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。