ParamsDrag: Interactive Parameter Space Exploration via Image-Space Dragging
- URL: http://arxiv.org/abs/2407.14100v1
- Date: Fri, 19 Jul 2024 08:12:41 GMT
- Title: ParamsDrag: Interactive Parameter Space Exploration via Image-Space Dragging
- Authors: Guan Li, Yang Liu, Guihua Shan, Shiyu Cheng, Weiqun Cao, Junpeng Wang, Ko-Chih Wang,
- Abstract summary: ParamsDrag is a model that facilitates parameter space exploration through direct interaction with visualizations.
First, the generative component of ParamsDrag generates visualizations based on the input simulation parameters.
Second, by directly dragging structure-related features in the visualizations, users can intuitively understand the controlling effect of different parameters.
Third, with the understanding from the earlier step, users can steer ParamsDrag to produce dynamic visual outcomes.
- Score: 10.860159623360842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical simulation serves as a cornerstone in scientific modeling, yet the process of fine-tuning simulation parameters poses significant challenges. Conventionally, parameter adjustment relies on extensive numerical simulations, data analysis, and expert insights, resulting in substantial computational costs and low efficiency. The emergence of deep learning in recent years has provided promising avenues for more efficient exploration of parameter spaces. However, existing approaches often lack intuitive methods for precise parameter adjustment and optimization. To tackle these challenges, we introduce ParamsDrag, a model that facilitates parameter space exploration through direct interaction with visualizations. Inspired by DragGAN, our ParamsDrag model operates in three steps. First, the generative component of ParamsDrag generates visualizations based on the input simulation parameters. Second, by directly dragging structure-related features in the visualizations, users can intuitively understand the controlling effect of different parameters. Third, with the understanding from the earlier step, users can steer ParamsDrag to produce dynamic visual outcomes. Through experiments conducted on real-world simulations and comparisons with state-of-the-art deep learning-based approaches, we demonstrate the efficacy of our solution.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - SurroFlow: A Flow-Based Surrogate Model for Parameter Space Exploration and Uncertainty Quantification [17.175947741031674]
Existing deep learning-based surrogate models facilitate efficient data generation, but fall short in uncertainty quantification, efficient parameter space exploration, and reverse prediction.
We introduce SurroFlow, a novel normalizing flow-based surrogate model, to learn the invertible transformation between simulation parameters and simulation outputs.
Our framework significantly reduces the computational costs while enhancing the reliability and exploration capabilities of scientific surrogate models.
arXiv Detail & Related papers (2024-07-16T19:08:49Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
We propose two data augmentation methods customized for tracking.
First, we optimize existing random cropping via a dynamic search radius mechanism and simulation for boundary samples.
Second, we propose a token-level feature mixing augmentation strategy, which enables the model against challenges like background interference.
arXiv Detail & Related papers (2023-09-15T09:18:54Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for
Parameter Space Exploration of Unstructured-Mesh Ocean Simulations [8.851780016570311]
We propose a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations.
GNN-Surrogate predicts the output field with given simulation parameters.
We give evaluations on the MPAS-Ocean simulation to demonstrate the effectiveness and efficiency of GNN-Surrogate.
arXiv Detail & Related papers (2022-02-18T01:51:09Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
Policies trained in simulation often fail when transferred to the real world.
Current approaches to tackle this problem, such as domain randomization, require prior knowledge and engineering.
We propose a method for automatically tuning simulator system parameters to match the real world.
arXiv Detail & Related papers (2021-04-15T17:59:55Z) - Online Parameter Estimation for Safety-Critical Systems with Gaussian
Processes [6.122161391301866]
We present a Bayesian optimization framework based on Gaussian processes (GPs) for online parameter estimation.
It uses an efficient search strategy over a response surface in the parameter space for finding the global optima with minimal function evaluations.
We demonstrate our technique on an actuated planar pendulum and safety-critical quadrotor in simulation with changing parameters.
arXiv Detail & Related papers (2020-02-18T20:38:00Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
We introduce a differentiable physics simulator for rigid body dynamics.
In the context of trajectory optimization, we introduce a closed-loop model-predictive control algorithm.
arXiv Detail & Related papers (2020-01-22T03:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.