論文の概要: Enhancing Variable Importance in Random Forests: A Novel Application of Global Sensitivity Analysis
- arxiv url: http://arxiv.org/abs/2407.14194v1
- Date: Fri, 19 Jul 2024 10:45:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:54:18.931989
- Title: Enhancing Variable Importance in Random Forests: A Novel Application of Global Sensitivity Analysis
- Title(参考訳): ランダム林における多様性の重要性を高める:グローバル感性分析の新しい応用
- Authors: Giulia Vannucci, Roberta Siciliano, Andrea Saltelli,
- Abstract要約: 本研究は,Global Sensitivity Analysisをランダムフォレストなどの教師あり機械学習手法に適用する。
グローバル感度解析は、入力変数の不確かさが出力に与える影響を調べるために主に数学的モデリングで用いられる。
シミュレーション研究により,提案手法は,効率,説明能力,あるいは既存の結果の確認方法によって,どのような進歩が達成できるかを探索するために有効であることが示唆された。
- 参考スコア(独自算出の注目度): 0.9954382983583578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The present work provides an application of Global Sensitivity Analysis to supervised machine learning methods such as Random Forests. These methods act as black boxes, selecting features in high--dimensional data sets as to provide accurate classifiers in terms of prediction when new data are fed into the system. In supervised machine learning, predictors are generally ranked by importance based on their contribution to the final prediction. Global Sensitivity Analysis is primarily used in mathematical modelling to investigate the effect of the uncertainties of the input variables on the output. We apply it here as a novel way to rank the input features by their importance to the explainability of the data generating process, shedding light on how the response is determined by the dependence structure of its predictors. A simulation study shows that our proposal can be used to explore what advances can be achieved either in terms of efficiency, explanatory ability, or simply by way of confirming existing results.
- Abstract(参考訳): 本研究は,Global Sensitivity Analysisをランダムフォレストなどの教師あり機械学習手法に適用する。
これらの手法はブラックボックスとして機能し、システムに新しいデータが供給された際の予測において正確な分類器を提供するために高次元データセットの特徴を選択する。
教師付き機械学習では、予測者は最終的な予測への貢献に基づいて、一般的に重要度によってランク付けされる。
グローバル感度解析は、入力変数の不確かさが出力に与える影響を調べるために主に数学的モデリングで用いられる。
本稿では,データ生成プロセスの説明可能性に重点を置くことで,入力特徴のランク付けを行う新しい手法として,予測器の依存構造によって応答がどのように決定されるかを示す。
シミュレーション研究により,提案手法は,効率,説明能力,あるいは既存の結果の確認方法によって,どのような進歩が達成できるかを探索するために有効であることが示唆された。
関連論文リスト
- A Novel Hybrid Feature Importance and Feature Interaction Detection
Framework for Predictive Optimization in Industry 4.0 Applications [1.0870564199697297]
本稿では,特徴重要度検出(LIME)と特徴相互作用検出(NID)を組み合わせた新しいハイブリッドフレームワークを提案する。
実験の結果、R2スコアの最大9.56%が増加し、ルート平均平方誤差の最大24.05%が縮小された。
論文 参考訳(メタデータ) (2024-03-04T13:22:53Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - Factor Importance Ranking and Selection using Total Indices [0.0]
要因の重要度は、特定の予測アルゴリズムに頼ることなく、機能の予測可能性を特徴づけるべきである。
本研究は,地球規模の感度分析から,予測可能性とソボ指標との等価性を示す。
ノイズデータから直接推定できる新しい一貫した推定器を導入する。
論文 参考訳(メタデータ) (2024-01-01T16:02:06Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Generative Causal Representation Learning for Out-of-Distribution Motion
Forecasting [13.99348653165494]
本稿では,分散シフト下での知識伝達を容易にするための生成因果学習表現を提案する。
ヒトの軌道予測モデルにおいて提案手法の有効性を評価する一方、GCRLは他の領域にも適用可能である。
論文 参考訳(メタデータ) (2023-02-17T00:30:44Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。