論文の概要: Personalized Multi-tier Federated Learning
- arxiv url: http://arxiv.org/abs/2407.14251v1
- Date: Fri, 19 Jul 2024 12:31:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:34:39.041943
- Title: Personalized Multi-tier Federated Learning
- Title(参考訳): パーソナライズされた多層フェデレーションラーニング
- Authors: Sourasekhar Banerjee, Ali Dadras, Alp Yurtsever, Monowar Bhuyan,
- Abstract要約: パーソナライズド・フェデレーション・ラーニング(PerFL)の主な課題は、安価な通信でデータの統計特性を捉え、参加するデバイスにカスタマイズされたパフォーマンスを得ることである。
我々は,多層アーキテクチャ(PerMFL)における個人化フェデレーション学習を導入し,デバイス間でチーム構造が知られている場合に,最適化されたパーソナライズされたローカルモデルを得る。
- 参考スコア(独自算出の注目度): 7.124736158080938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key challenge of personalized federated learning (PerFL) is to capture the statistical heterogeneity properties of data with inexpensive communications and gain customized performance for participating devices. To address these, we introduced personalized federated learning in multi-tier architecture (PerMFL) to obtain optimized and personalized local models when there are known team structures across devices. We provide theoretical guarantees of PerMFL, which offers linear convergence rates for smooth strongly convex problems and sub-linear convergence rates for smooth non-convex problems. We conduct numerical experiments demonstrating the robust empirical performance of PerMFL, outperforming the state-of-the-art in multiple personalized federated learning tasks.
- Abstract(参考訳): パーソナライズド・フェデレーション・ラーニング(PerFL)の鍵となる課題は、安価な通信でデータの統計的不均一性を捕捉し、参加するデバイスに対してカスタマイズされたパフォーマンスを得ることである。
これらの問題に対処するために、多層アーキテクチャ(PerMFL)におけるパーソナライズされたフェデレーション学習を導入し、デバイス間でチーム構造が知られている場合に、最適化されたパーソナライズされたローカルモデルを得る。
我々は、滑らかな凸問題に対する線形収束率と滑らかな非凸問題に対する線形収束率を提供するPerMFLの理論的保証を提供する。
我々はPerMFLの強靭な経験的性能を実証する数値実験を行い、複数の個別化学習タスクにおいて最先端の学習性能を上回った。
関連論文リスト
- Personalized Federated Learning with Adaptive Feature Aggregation and Knowledge Transfer [0.0]
フェデレートラーニング(FL)は、分散データ上で単一のモデルを生成するための、プライバシ保護機械学習パラダイムとして人気がある。
適応的特徴集約と知識伝達(FedAFK)による個人化学習手法を提案する。
広範に使われている2つの不均一な条件下で3つのデータセットについて広範な実験を行い、提案手法が13の最先端ベースラインに対して優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-19T11:32:39Z) - Personalized Federated Learning Techniques: Empirical Analysis [2.9521571597754885]
我々は、様々なデータセットとデータ分割にまたがる10の卓越したpFL手法を実証的に評価し、その性能に有意な違いが判明した。
本研究は,pFLのスケーリングにおける通信効率の重要な役割を強調し,実際の展開における資源利用にどのように影響するかを示す。
論文 参考訳(メタデータ) (2024-09-10T18:16:28Z) - Prioritizing Modalities: Flexible Importance Scheduling in Federated Multimodal Learning [5.421492821020181]
Federated Learning(FL)は、デバイスがローカルデータを共有せずにモデルを協調的にトレーニングできる分散機械学習アプローチである。
FLを実世界のデータに適用することは、特に既存のFL研究が不正なデータに焦点を当てているため、課題を提示している。
我々は,各モードエンコーダのトレーニングリソースを適応的に割り当てることで,MFLにおける計算効率を向上させる新しい手法FlexModを提案する。
論文 参考訳(メタデータ) (2024-08-13T01:14:27Z) - Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformer (ViT) と Visual Prompt Tuning (VPT) は、様々なコンピュータビジョンタスクの効率を改善して最先端のパフォーマンスを実現する。
本稿では,GFL(Generalized FL)とPFL(Personalized FL)を組み合わせた新しいアルゴリズムSGPTを提案する。
論文 参考訳(メタデータ) (2023-10-27T17:22:09Z) - Profit: Benchmarking Personalization and Robustness Trade-off in
Federated Prompt Tuning [40.16581292336117]
フェデレートラーニング(FL)の多くの応用において、クライアントはローカルデータを用いてパーソナライズされたモデルを求めているが、一般的なグローバルな知識を保持するという意味でも堅牢である。
フェデレーションシステムの設計において、このパーソナライゼーションとロバストネスのトレードオフをどのようにナビゲートするかを理解することは重要である。
論文 参考訳(メタデータ) (2023-10-06T23:46:33Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z) - CoFED: Cross-silo Heterogeneous Federated Multi-task Learning via
Co-training [11.198612582299813]
Federated Learning(FL)は、参加者がプライベートデータを交換することなく、高品質なモデルを協調的にトレーニングできる機械学習技術である。
擬似ラベル付き未ラベルデータに基づく通信効率の高いFLスキームであるCoFEDを提案する。
実験結果から,CoFEDは通信コストの低減を図った。
論文 参考訳(メタデータ) (2022-02-17T11:34:20Z) - Achieving Personalized Federated Learning with Sparse Local Models [75.76854544460981]
フェデレートラーニング(FL)は異種分散データに対して脆弱である。
この問題に対処するため、個人ごとに専用のローカルモデルを作成するためにパーソナライズされたFL(PFL)が提案された。
既存のPFLソリューションは、異なるモデルアーキテクチャに対する不満足な一般化を示すか、あるいは膨大な余分な計算とメモリを犠牲にするかのどちらかである。
我々は、パーソナライズされたスパースマスクを用いて、エッジ上のスパースローカルモデルをカスタマイズする新しいPFLスキームFedSpaを提案する。
論文 参考訳(メタデータ) (2022-01-27T08:43:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。