論文の概要: Stable Audio Open
- arxiv url: http://arxiv.org/abs/2407.14358v2
- Date: Wed, 31 Jul 2024 16:22:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 13:07:45.668190
- Title: Stable Audio Open
- Title(参考訳): 安定したオーディオオープン
- Authors: Zach Evans, Julian D. Parker, CJ Carr, Zack Zukowski, Josiah Taylor, Jordi Pons,
- Abstract要約: 本稿では,Creative Commonsデータを用いて学習した新しいオープンウェイトテキスト・トゥ・オーディオモデルのアーキテクチャとトレーニングプロセスについて述べる。
評価の結果、モデルの性能は様々な指標で最先端と競合していることがわかった。
- 参考スコア(独自算出の注目度): 8.799402694043955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open generative models are vitally important for the community, allowing for fine-tunes and serving as baselines when presenting new models. However, most current text-to-audio models are private and not accessible for artists and researchers to build upon. Here we describe the architecture and training process of a new open-weights text-to-audio model trained with Creative Commons data. Our evaluation shows that the model's performance is competitive with the state-of-the-art across various metrics. Notably, the reported FDopenl3 results (measuring the realism of the generations) showcase its potential for high-quality stereo sound synthesis at 44.1kHz.
- Abstract(参考訳): オープンな生成モデルはコミュニティにとって極めて重要であり、ファインチューンを可能にし、新しいモデルを提示する際にベースラインとして機能する。
しかし、現在のテキスト・トゥ・オーディオモデルのほとんどはプライベートであり、アーティストや研究者が構築するにはアクセスできない。
本稿では、Creative Commonsデータでトレーニングされた新しいオープンウェイトテキスト・トゥ・オーディオモデルのアーキテクチャとトレーニングプロセスについて述べる。
評価の結果、モデルの性能は様々な指標で最先端と競合していることがわかった。
特に、報告されたFDopenl3の結果(世代のリアリズムを測る)は、44.1kHzで高品質なステレオ音声合成の可能性を示している。
関連論文リスト
- Can Synthetic Audio From Generative Foundation Models Assist Audio Recognition and Speech Modeling? [40.3708221702947]
本研究の目的は,学習データとして使用することの有効性を検証し,音質を評価することである。
具体的には,音声認識における合成音声の利用について検討する。
また、音声関連モデリングにおいて、合成音声がデータ拡張の資源となるかどうかについても検討する。
論文 参考訳(メタデータ) (2024-06-13T04:33:05Z) - Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
本稿では,複数の改良を加えた多言語音声認識モデルを提案する。
我々は、6つの異なる言語に対する音声視覚訓練データの量を増やし、重複しない多言語データセットの自動書き起こしを生成する。
提案モデルでは, LRS3データセット上での新たな最先端性能を実現し, WERは0.8%に達した。
論文 参考訳(メタデータ) (2024-03-14T01:16:32Z) - Pheme: Efficient and Conversational Speech Generation [52.34331755341856]
我々は,コンパクトだが高性能な会話型TSモデルを提供するPhemeモデルシリーズを紹介する。
小規模の会話データで効率的にトレーニングでき、データ要求を10倍に削減できるが、自動回帰的TSモデルの品質にマッチする。
論文 参考訳(メタデータ) (2024-01-05T14:47:20Z) - Audiobox: Unified Audio Generation with Natural Language Prompts [37.39834044113061]
本稿では,様々な音響モダリティを生成可能なフローマッチングに基づく統一モデルであるAudioboxを提案する。
我々は、制御性を高め、音声および音声生成パラダイムを統一するために、記述ベースおよび例ベースプロンプトを設計する。
Audioboxは、音声と音声の生成に関する新しいベンチマークを設定し、新しい音声と音響のスタイルで音声を生成する新しいメソッドをアンロックする。
論文 参考訳(メタデータ) (2023-12-25T22:24:49Z) - StemGen: A music generation model that listens [9.489938613869864]
音楽の文脈に耳を傾けたり反応したりできる音楽生成モデルを作成するための代替パラダイムを提案する。
本稿では,非自己回帰型トランスフォーマーモデルアーキテクチャを用いて,そのようなモデルを構築する方法について述べる。
得られたモデルは、最先端のテキスト条件付きモデルの音質に到達し、その文脈と強い音楽的コヒーレンスを示す。
論文 参考訳(メタデータ) (2023-12-14T08:09:20Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
深層生成モデルは、様々な種類の表現で条件付けられた高忠実度オーディオを生成することができる。
これらのモデルは、条件付けに欠陥がある場合や不完全な場合、可聴アーチファクトを生成する傾向がある。
低ビットレート離散表現から任意の種類のオーディオモダリティを生成する高忠実度マルチバンド拡散ベースフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T22:14:29Z) - MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training [74.32603591331718]
本稿では,MLMスタイルの音響事前学習において,教師モデルと擬似ラベルを組み込んだ大規模自己教師型学習(MERT)を用いた音響音楽理解モデルを提案する。
実験結果から,本モデルでは14曲の楽曲理解タスクを一般化し,性能を向上し,SOTA(State-of-the-art)全体のスコアを達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-31T18:27:43Z) - Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models [65.18102159618631]
マルチモーダル生成モデリングは、テキスト・ツー・イメージとテキスト・ツー・ビデオ生成においてマイルストーンを生み出した。
高品質のテキストオーディオペアを備えた大規模データセットの欠如、長期連続的なオーディオデータのモデリングの複雑さ、という2つの主な理由から、オーディオへの適用は依然として遅れている。
本稿では,これらのギャップに対処する急激な拡散モデルを用いたMake-An-Audioを提案する。
論文 参考訳(メタデータ) (2023-01-30T04:44:34Z) - A Single Self-Supervised Model for Many Speech Modalities Enables
Zero-Shot Modality Transfer [31.028408352051684]
マルチモーダル音声と非モーダル音声の両方を活用できる自己教師型事前学習フレームワークであるu-HuBERTを提案する。
LRS3では1.2%/1.4%/27.2%の音声認識単語誤り率を示す。
論文 参考訳(メタデータ) (2022-07-14T16:21:33Z) - Large Scale Audiovisual Learning of Sounds with Weakly Labeled Data [9.072124914105325]
本稿では、弱いラベル付きビデオ記録から音を認識することを学習するオーディオ視覚融合モデルを提案する。
大規模音響イベントデータセットであるAudioSetの実験は,提案モデルの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-29T01:30:14Z) - Audio ALBERT: A Lite BERT for Self-supervised Learning of Audio
Representation [51.37980448183019]
本稿では,自己教師型音声表現モデルの簡易版であるAudio ALBERTを提案する。
我々は、Audio ALBERTが、下流タスクにおいて、これらの巨大なモデルと競合する性能を達成することができることを示す。
探索実験において、潜在表現は、最後の層よりも音素と話者のリッチな情報をエンコードすることがわかった。
論文 参考訳(メタデータ) (2020-05-18T10:42:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。