Controllable and Efficient Multi-Class Pathology Nuclei Data Augmentation using Text-Conditioned Diffusion Models
- URL: http://arxiv.org/abs/2407.14426v1
- Date: Fri, 19 Jul 2024 15:53:44 GMT
- Title: Controllable and Efficient Multi-Class Pathology Nuclei Data Augmentation using Text-Conditioned Diffusion Models
- Authors: Hyun-Jic Oh, Won-Ki Jeong,
- Abstract summary: We introduce a novel two-stage framework for multi-class nuclei data augmentation using text-conditional diffusion models.
In the first stage, we innovate nuclei label synthesis by generating multi-class semantic labels.
In the second stage, we utilize a semantic and text-conditional latent diffusion model to efficiently generate high-quality pathology images.
- Score: 4.1326413814647545
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the field of computational pathology, deep learning algorithms have made significant progress in tasks such as nuclei segmentation and classification. However, the potential of these advanced methods is limited by the lack of available labeled data. Although image synthesis via recent generative models has been actively explored to address this challenge, existing works have barely addressed label augmentation and are mostly limited to single-class and unconditional label generation. In this paper, we introduce a novel two-stage framework for multi-class nuclei data augmentation using text-conditional diffusion models. In the first stage, we innovate nuclei label synthesis by generating multi-class semantic labels and corresponding instance maps through a joint diffusion model conditioned by text prompts that specify the label structure information. In the second stage, we utilize a semantic and text-conditional latent diffusion model to efficiently generate high-quality pathology images that align with the generated nuclei label images. We demonstrate the effectiveness of our method on large and diverse pathology nuclei datasets, with evaluations including qualitative and quantitative analyses, as well as assessments of downstream tasks.
Related papers
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Co-synthesis of Histopathology Nuclei Image-Label Pairs using a Context-Conditioned Joint Diffusion Model [3.677055050765245]
We introduce a novel framework for co-synthesizing histopathology nuclei images and paired semantic labels.
We demonstrate the effectiveness of our framework in generating high-quality samples on multi-institutional, multi-organ, and multi-modality datasets.
arXiv Detail & Related papers (2024-07-19T16:06:11Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
We introduce the first diffusion-based augmentation method for nuclei segmentation.
The idea is to synthesize a large number of labeled images to facilitate training the segmentation model.
The experimental results show that by augmenting 10% labeled real dataset with synthetic samples, one can achieve comparable segmentation results.
arXiv Detail & Related papers (2023-10-22T06:16:16Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - DiffMix: Diffusion Model-based Data Synthesis for Nuclei Segmentation
and Classification in Imbalanced Pathology Image Datasets [8.590026259176806]
We propose a realistic data synthesis method using a diffusion model.
We generate two types of virtual patches to enlarge the training data distribution.
We use a semantic-label-conditioned diffusion model to generate realistic and high-quality image samples.
arXiv Detail & Related papers (2023-06-25T05:31:08Z) - NASDM: Nuclei-Aware Semantic Histopathology Image Generation Using
Diffusion Models [3.2996723916635267]
First-of-its-kind nuclei-aware semantic tissue generation framework (NASDM)
NASDM can synthesize realistic tissue samples given a semantic instance mask of up to six different nuclei types.
These synthetic images are useful in applications in pathology, validation of models, and supplementation of existing nuclei segmentation datasets.
arXiv Detail & Related papers (2023-03-20T22:16:03Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
We introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours.
We construct a dual-pathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor.
The generated images yield significant quantitative improvement compared to existing methods.
arXiv Detail & Related papers (2021-04-22T11:18:17Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.