論文の概要: Red-QAOA: Efficient Variational Optimization through Circuit Reduction
- arxiv url: http://arxiv.org/abs/2407.14490v1
- Date: Fri, 19 Jul 2024 17:44:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 16:35:50.897679
- Title: Red-QAOA: Efficient Variational Optimization through Circuit Reduction
- Title(参考訳): Red-QAOA:回路還元による効率的な変分最適化
- Authors: Meng Wang, Bo Fang, Ang Li, Prashant Nair,
- Abstract要約: 本稿では,シミュレーショングラフによるエネルギーランドスケープ濃度の低減を目的としたRed-QAOAを提案する。
Red-QAOAは、元のグラフとほぼ同じパラメータを持つより小さな(蒸留された)グラフを生成する。
最適化の最後に、Red-QAOAは原グラフ上の蒸留グラフからパラメータを使用し、原グラフ上のパラメータ探索を継続する。
- 参考スコア(独自算出の注目度): 18.10796328987414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) addresses combinatorial optimization challenges by converting inputs to graphs. However, the optimal parameter searching process of QAOA is greatly affected by noise. Larger problems yield bigger graphs, requiring more qubits and making their outcomes highly noise-sensitive. This paper introduces Red-QAOA, leveraging energy landscape concentration via a simulated annealing-based graph reduction. Red-QAOA creates a smaller (distilled) graph with nearly identical parameters to the original graph. The distilled graph produces a smaller quantum circuit and thus reduces noise impact. At the end of the optimization, Red-QAOA employs the parameters from the distilled graph on the original graph and continues the parameter search on the original graph. Red-QAOA outperforms state-of-the-art Graph Neural Network (GNN)-based pooling techniques on 3200 real-world problems. Red-QAOA reduced node and edge counts by 28% and 37%, respectively, with a mean square error of only 2%.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、入力をグラフに変換することで組合せ最適化の課題に対処する。
しかし,QAOAの最適パラメータ探索は雑音の影響が大きい。
より大きな問題はより大きなグラフをもたらし、より多くの量子ビットを必要とし、その結果を非常にノイズに敏感にする。
本稿では, 模擬アニーリング法を用いて, エネルギーランドスケープ濃度を利用したRed-QAOAを提案する。
Red-QAOAは、元のグラフとほぼ同じパラメータを持つより小さな(蒸留された)グラフを生成する。
蒸留されたグラフは、より小さな量子回路を生成するため、ノイズの影響を低減する。
最適化の最後に、Red-QAOAは原グラフ上の蒸留グラフからパラメータを使用し、原グラフ上のパラメータ探索を継続する。
Red-QAOAは、3200の現実世界の問題に対して最先端のグラフニューラルネットワーク(GNN)ベースのプール技術より優れています。
Red-QAOAではノード数とエッジ数がそれぞれ28%、エッジ数が37%減少し、平均2乗誤差は2%に過ぎなかった。
関連論文リスト
- Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors [16.04850782310842]
我々は反復最適化アルゴリズムをアンロールすることで、解釈可能で軽量なトランスフォーマーのようなニューラルネットワークを構築する。
正規化信号依存グラフ学習モジュールは、従来の変圧器の基本自己保持機構の変種に相当する。
論文 参考訳(メタデータ) (2024-06-06T14:01:28Z) - Robust Graph Neural Network based on Graph Denoising [10.564653734218755]
グラフニューラルネットワーク(GNN)は、非ユークリッドデータセットを扱う学習問題に対して、悪名高い代替手段として登場した。
本研究は,観測トポロジにおける摂動の存在を明示的に考慮した,GNNの堅牢な実装を提案する。
論文 参考訳(メタデータ) (2023-12-11T17:43:57Z) - Efficient Heterogeneous Graph Learning via Random Projection [65.65132884606072]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Gradient scarcity with Bilevel Optimization for Graph Learning [0.0]
勾配不足は、ノードのサブセットの損失を最小限にすることでグラフを学習する際に発生する。
我々は、この現象の正確な数学的特徴を与え、双レベル最適化にも現れることを証明した。
この問題を緩和するために,グラフ・ツー・グラフモデル(G2G)を用いた潜時グラフ学習,グラフに先行構造を課すグラフ正規化,あるいは直径を縮小した元のグラフよりも大きなグラフを最適化することを提案する。
論文 参考訳(メタデータ) (2023-03-24T12:37:43Z) - $\rm A^2Q$: Aggregation-Aware Quantization for Graph Neural Networks [18.772128348519566]
グラフニューラルネットワーク(GNN)のための集約型混合精度量子化(rm A2Q$)を提案する。
本手法は,ノードレベルのタスクとグラフレベルのタスクで最大11.4%,9.5%の精度向上を実現し,専用ハードウェアアクセラレータで最大2倍の高速化を実現する。
論文 参考訳(メタデータ) (2023-02-01T02:54:35Z) - RAGO: Recurrent Graph Optimizer For Multiple Rotation Averaging [62.315673415889314]
本稿では,複数回転平均化(MRA)のための深部繰り返し回転平均化グラフ(RAGO)を提案する。
我々のフレームワークは、実世界のアプリケーションに小さなサイズでデプロイされた、リアルタイムに学習から最適化するローテーション平均化グラフである。
論文 参考訳(メタデータ) (2022-12-14T13:19:40Z) - FGOT: Graph Distances based on Filters and Optimal Transport [62.779521543654134]
グラフ比較は、グラフ間の類似点と相違点の識別を扱う。
大きな障害は、グラフの未知のアライメントと、正確で安価な比較指標の欠如である。
本研究では,フィルタグラフ距離近似を導入する。
論文 参考訳(メタデータ) (2021-09-09T17:43:07Z) - Very Deep Graph Neural Networks Via Noise Regularisation [57.450532911995516]
グラフニューラルネットワーク(GNN)は、入力グラフを介して学習されたメッセージパッシングを実行する。
最大100のメッセージパッシングステップを持つディープGNNをトレーニングし、いくつかの最先端の結果を得る。
論文 参考訳(メタデータ) (2021-06-15T08:50:10Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
本稿では,従来のグラフ信号フィルタリングと深い特徴学習を併用して,競合するハイブリッド設計を提案する。
解釈可能な低パスグラフフィルタを用い、最先端のDL復調方式DnCNNよりも80%少ないネットワークパラメータを用いる。
論文 参考訳(メタデータ) (2020-10-21T20:04:22Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。